37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞不掂的问题,希望能够抛砖引玉。
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百五十三:2.4寸TFT液晶触摸屏 彩屏模块 可直插UNO R3 Mega2560开发板
知识点:TFT-LCD 高清真彩显示屏
TFT LCD是液晶显示器(LCD)的一种变体,它使用薄膜晶体管(TFT)技术来改善图像质量,例如可寻址性和对比度。 TFT LCD是有源矩阵LCD,与无源矩阵LCD或具有少量段的简单直接驱动LCD相比。TFT-LCD是采用新材料和新工艺的大规模半导体全集成电路制造技术,是液晶(lc)、无机和有机薄膜电致发光(el和oel)平板显示器的基础。tft是在玻璃或塑料基板等非单晶片上(当然也可以在晶片上)通过溅射、化学沉积工艺形成制造电路必需的各种膜,通过对膜的加工制作大规模半导体集成电路(lsic)。采用非单晶基板可以大幅度地降低成本,是传统大规模集成电路向大面积、多功能、低成本方向的延伸。在大面积玻璃或塑料基板上制造控制像元(lc或oled)开关性能的tft比在硅片上制造大规模ic的技术难度更大。对生产环境的要求(净化度为100级),对原材料纯度的要求(电子特气的纯度为99.999985%),对生产设备和生产技术的要求都超过半导体大规模集成,是现代大生产的顶尖技术。
简单地说,它是一个以电信号控制的光开关装置。液晶介于两片透明导电的铟锡氧化物 (ITO) 电极之间,经由加在 ITO 电极上的电压高低可以控制不同的液晶 排列方向 (如图二),而液晶的排列方向与光线的穿透量有关,进而造成像素亮暗程度不同,这就是灰阶的控制原理 (颜色则是由彩色滤光片产生)。此像素的灰阶是由数据驱动器 (Data driver) 所能提供的分电压数目决定。
TFT屏幕是什么意思
TFT(Thin Film Transistor) 即薄膜场效应晶体管,它可以“主动地”对屏幕上的各个独立的像素进行控制,这样可以大大提高反应时间。一般 TFT 的反应时间比较快,约 80 毫秒,而且可视角度大,一般可达到 130 度左右,主要运用在高端产品。从而可以做到高速度、高亮度、高对比度显示屏幕信息。 TFT 属于有源矩阵液晶显示器,在技术上采用了“主动式矩阵”的方式来驱动,方法是利用薄膜技术所作成的电晶体电极,利用扫描的方法“主动拉”控制任意一个显示点的开与关,光源照射时先通过下偏光板向上透出,借助液晶分子传导光线,通过遮光和透光来达到显示的目的。
新一代的彩屏手机中很多都支持 65536 色显示,有的甚至支持 16 万色显示,这时 TFT 的高对比度,色彩丰富的优势就非常重要了。
TFT 型的液晶显示器主要的构成包括:萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等。
TFT 屏幕怎么样
TFT 还改善了 STN 会闪烁 ( 水波纹 ) 模糊的现象,有效地提高了播放动态画面的能力。与 STN 相比 TFT 有出色的色彩饱和度、还原能力和更高的对比度,但是缺点就是比较耗电,而且成本也比较高。
TFT 液晶为每个像素都设有一个半导体开关,每个像素都可以通过点脉冲直接控制,因而每个节点都相对独立,并可以连续控制,不仅提高了显示屏的反应速度,同时可以精确控制显示色阶,所以 TFT 液晶的色彩更真。 TFT 液晶显示屏的特点是亮度好、对比度高、层次感强、颜色鲜艳,但也存在着比较耗电和成本较高的不足。 TFT 液晶技术加快了手机彩屏的发展。新一代的彩屏手机中很多都支持 65536 色显示,有的甚至支持 16 万色显示,这时 TFT 的高对比度,色彩丰富的优势就非常重要了。
TFT-LCD工作原理
TFT 就是“ Thin Film Transistor ”的简称,一般代指薄膜液晶显示器,而实际上指的是薄膜晶体管(矩阵)—— 可以“主动的”对屏幕上的各个独立的象素进行控制,这也就是所谓的主动矩阵 TFT ( active matrix TFT )的来历。那么图象究竟是怎么产生的呢?基本原理很简单:显示屏由许多可以发出任意颜色的光线的象素组成,只要控制各个象素显示相应的颜色就能达到目的了。在 TFT LCD 中一般采用背光技术,为了能精确地控制每一个象素的颜色和亮度就需要在每一个象素之后安装一个类似百叶窗的开关,当“百叶窗”打开时光线可以透过来,而“百叶窗”关上后光线就无法透过来。当然,在技术上实际上实现起来就不像刚才说的那么简单。 LCD ( Liquid Crystal Display )就是利用了液晶的特性(当加热时为液态,冷却时就结晶为固态),一般液晶有三种形态:
类似粘土的层列( Smectic )液晶
类似细火柴棒的丝状( Nematic )液晶
类似胆固醇状的( Cholestic )液晶
液晶显示器使用的是丝状,当外界环境变化它的分子结构也会变化,从而具有不同的物理特性 ——就能够达到让光线通过或者阻挡光线的目的——也就是刚才比方的百叶窗。大家知道三原色,所以构成显示屏上的每个象素需上面介绍的三个类似的基本组件来构成,分别控制红、绿、蓝三种颜色。
TFT-LCD主要特点
(1)大面积:九十年代初第一代大面积玻璃基板(300mm×400mm)tft-lcd生产线投产,到2000年上半年玻璃基板的面积已经扩大到了680mm×880mm),而预计在09年启动的日本sharp在大阪投资的10代线玻璃基板尺寸达到了2880mmx3080mm,该尺寸玻璃面板可裁切15片42寸的液晶电视。
(2)高集成度:用于液晶投影的1.3英寸tft芯片的分辨率为xga含有百万个象素。分辨率为sxga(1280×1024)的16.1英寸的tft阵列非晶体硅的膜厚只有50nm,以及tab on glass和system on glass技术,其ic的集成度,对设备和供应技术的要求,技术难度都超过传统的lsi。
(3)功能强大:tft最早作为矩阵选址电路改善了液晶的光阀特性。对于高分辨率显示器,通过0-6v范围的电压调节(其典型值0.2到4v),实现了对象元的精确控制,从而使lcd实现高质量的高分辨率显示成为可能。tft-lcd是人类历史上第一种在显示质量上超过crt的平板显示器。人们开始把驱动ic集成到玻璃基板上,整个tft的功能将更强大,这是传统的大规模半导体集成电路所无法比拟的。
(4)低成本:玻璃基板和塑料基板从根本上解决了大规模半导体集成电路的成本问题,为大规模半导体集成电路的应用开拓了广阔的应用空间。
(5)工艺灵活:除了采用溅射、cvd(化学气相沉积)mcvd(分子化学气相沉积)等传统工艺成膜以外,激光退火技术也开始应用,既可以制作非晶膜、多晶膜,也可以制造单晶膜。不仅可以制作硅膜,也可以制作其他的Ⅱ-Ⅵ族和Ⅲ-Ⅴ族半导体薄膜。
(6)应用领域广泛,以tft技术为基础的液晶平板显示器是信息社会的支柱产业,也技术可应用到正在迅速成长中的薄膜晶体管有机电致发光(tft-oled)平板显示器也在迅速的成长中。
TFT-LCD驱动电路(采用ILI9341芯片)
为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB(自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。
本例TFT-LCD采用ILI9341驱动芯片。该控制芯片是封装在TFT-LCD内部,只留有外部引脚接口。对于用户来说,只要掌握如何向ILI9341控制器发送指令和读写数据,并不需要再设计额外的驱动电路。ILI9341驱动芯片主要由接口电路、显存(GRAM)、LCD驱动电路、背光控制、电源等部分组成,主要结构如图所示。
ILI9341
是一个支持分辨率为240RGBx320点阵的a-TFT LCD 的262144色单片驱动器。这个单片驱动器包含了一个720通道的源极驱动器(source driver),一个320通道的栅极驱动器(gate driver),172800字节的GRAM用于显示240RGBx320分辨率的图片数据,一套电源支持电路。ILI9341提供8位/9位/16位/18位的并行MCU数据总线,6位/16位/18位RGB接口数据总线以及3或4线SPI接口(serial peripheral interface)。通过窗口地址函数,电影区域被指定在GRAM内。这个指定的窗口区域可以被有选择地更新,因此电影能够同时被显示在静态图像的单 独区域内。ILI9341的IO接口电压工作于1.65V-3.3V。一种合并的电压跟随电路,用以产生驱动液晶显示器的电压电平。ILI9341支持full color ,8-color显示模式,支持由软件控制的精确电源睡眠模式。这些功能使ILI9341成为类似于移动电话,小电话,MP3需要电池长效工作的中等或小尺寸便携产品的理想驱动器。ILI9341芯片功能框图如下。
ILI9341的8种扫描模式
无论MY、MX、MV设置的存储器扫描方向如何,数据总是以相同的顺序写入帧存储器。设置扫描方向后,还需要通过0x2A、0x2B指令重新设置显示窗口大小。
其中模式0和3为竖屏显示,模式5和6为横屏显示,这四种模式的扫描方向和稍后所讲的文字取模方向相同,旋转液晶屏即可达到阅读效果,其他模式直接显示时呈现乱码,需要根据扫描方向重新取模。
ML和MH主要设置帧存储器到LCD显示面板的数据刷新方向,就像过年贴春联,可以选择从上向下贴,或者从下向上贴,无论哪种方式,最后的显示效果是不变的,默认ML和MH都为0。
ILI9341支持的像素格式
TFT-LCD的每个像素点由红®、绿(G)、蓝(B)三原色组成,帧存储器为每个像素分配了18bit的存储空间,三原色各用6个数据位表示,也就是常说的RGB666格式,该模式色彩度最大,它们按不同比例的混合可以组成218种颜色,俗称262K色。同时ILI9341还支持16位、9位数据格式。
GRAM选择16位数据格式,16位数据格式下按照R:G:B =5:6:5格式存储,俗称RGB565格式,由于GRAM为每个像素预留的存储空间是18bit,为了保证写入的16bit像素数据能够正常匹配GRAM中18bit像素存储空间,控制器会自动将RGB565格式转换成RGB666格式,转换后数据存储形式如图7-16所示,空白位置表示没有数据。由于缺少了两位数据,此时TFT-LCD最大支持216种色彩度,也就是65K色
像素数据在帧存储器按照图的格式存储,即R位于高位,B位于低位。但是像素数据刷新到LCD显示屏上时,可以通过“存储器访问控制(0x36)”指令中的 BGR位选择像素数据写入到显示屏的方向,当BGR位为 0时,数据按照RGB(即R在高位,B在低位)的顺序写入;当BGR位为1时,数据沿BGR(即B在高位,R在低位)的顺序写入到液晶面板中。默认BGR位为1,该模式下写入的颜色与显示效果相同,像素刷新示意图如图所示。
2.4寸TFT液晶触摸屏 彩屏模块 可直插UNO R3和Mega2560扩展板 TFT-LCD 高清真彩显示屏 arduino 2.4inch TFT Touch Shield
插入arduino UNO后是这样的
主要特性
支持ArduinoUNO 和Mega2560等开发板直插使用,无需接线
320X240分辨率,显示效果清晰,支持触摸功能
支持16位RGB 65K颜色显示,显示色彩丰富
采用8位并行总线,比串口SPI刷新快
板载 5V/3.3V 电平转换 IC,兼容 5V/3.3V 工作电压
带SD卡槽方便扩展实验
提供Arduino库,提供丰富的示例程序
军工级工艺标准,长期稳定工作
提供底层驱动技术支持
特征:
· 2.4英寸对角液晶TFT显示屏
· 明亮的 4 个白光 LED 背光,默认开启,但您可以将晶体管连接到数字引脚以进行背光控制
· 多彩,18 位 262,000 种不同的色调
· 4线电阻式触摸屏
· 240×320分辨率
· spfd5408 控制器,内置视频 RAM 缓冲区
· 8位数字接口,外加4条控制线
· 使用数字引脚 5-13 和模拟引脚 0-3。这意味着您可以使用数字针脚 2、3 和模拟针脚 4 和 5。如果不使用微型 SD,针脚 12 可用
· 5V 兼容,配合 3.3V 或 5V 逻辑使用
· 板载 3.3V @ 300mA LDO 稳压器
规格:
尺寸:71527mm
重量:约31g