机器学习算法详解1:基础知识合集

机器学习算法详解1:基础知识合集

前言

​ 本系列主要对机器学习上算法的原理进行解读,给大家分享一下我的观点和总结。

本篇前言

​ 开一个新系列,另外现在开学了,忙起来了,所以更新会很慢。

目录结构

文章目录

    • 机器学习算法详解1:基础知识合集
      • 1. 分类与回归
        • 1.1 分类
        • 1.2 回归
      • 2. 损失函数
        • 2.1 含义
        • 2.2 常用损失函数
      • 3. 距离度量
        • 3.1 欧式距离
        • 3.2 曼哈顿距离
        • 3.3 切比雪夫距离
      • 4. 归一化
        • 4.1 作用
        • 4.2 最大最小值归一化
        • 4.3 z-score归一化
      • 5. 拟合
        • 5.1 含义
        • 5.2 分类
      • 6. 正则化
      • 7. 优化器/梯度下降算法
      • 8. 数据划分方法
        • 8.1 训练集、验证集与测试集:
        • 8.2 留出法
        • 8.3 交叉验证
      • 9. 编程语言
      • 10. 类别不平衡问题
        • 10.1 含义
        • 10.2 处理方法
      • 11. 评价指标
        • 11.1 回归任务评价指标
        • 11.2 混肴矩阵
      • 12. 多分类任务
        • 12.1 One vs One
        • 12.2 One vs Rest
        • 12.3 Many vs Many
      • 13. 总结

1. 分类与回归

​ 机器学习两大经典任务分类与回归。

1.1 分类

​ 即我们所认知的对某个东西进行分类。

1.2 回归

​ 用线性回归来解释,就是如下图:

在这里插入图片描述

​ 即直线会趋于各个点的中间值。

2. 损失函数

2.1 含义

​ 损失函数,也可以称之为目标函数、优化目标等等,是机器学习中的一个重要概念。

​ 简单来说,我们有一个任务,对它进行分析后,得到一个最终的函数f(x),我们的目标就是求f(x)的最小值。那么对于我们来说,f(x)就是损失函数/目标函数(其实不太严谨,不过大概就是这意思)

2.2 常用损失函数

​ 回归任务常用的损失函数就是MAE、MSE损失,即我们熟悉的均值误差和均方差误差,公式如下:

在这里插入图片描述

​ 而对于分类任务而言,常用的是交叉熵损失函数,二分类形式为:(其中y^ 为概率值,y为真实值,取值{0/1})

在这里插入图片描述

​ 另外,上式其实可以使用KL散度进行推导,这里先不说,后面讲解逻辑回归的时候进行说明。

3. 距离度量

​ 这里我先介绍三个最为常用的距离度量,至于KL"距离"后面讲。

3.1 欧式距离

​ 两点的直线距离,公式:

在这里插入图片描述

3.2 曼哈顿距离

​ 又称城市街区距离,即只允许走水平/垂直的路线:

在这里插入图片描述

​ 公式如下:

在这里插入图片描述

3.3 切比雪夫距离

​ 又称棋盘距离,即它可以向国际象棋里面的棋子一样可以走最大差值距离,公式如下:

在这里插入图片描述

4. 归一化

​ 归一化/标准化,其实差不多,都是让某个变量符合你选定的分布,这里介绍机器学习里常用的min-max归一化、z-score归一化。(深度学习中常用的是批量归一化等)

4.1 作用

  • 让数据的不同特征处于同一数量级
  • 避免激活函数饱和而使梯度消失
  • 加速收敛

​ 前两个作用好理解,但是为什么可以加速收敛呢

​ 假设损失函数受两个参数w1\w2影响,并且假设w1为主参数,权重大,w2为次参数,权重小,那么损失值图是三维的图,我们投影到二维就是等高线图,如下:

在这里插入图片描述

​ 那么,我们开始优化损失函数,假设起点在五角星位置,由于w1参数比w2参数重要,这意味着优化的时候w1方向走得快,w2走得慢,那么优化过程便如下图:

在这里插入图片描述

​ 但是,归一化后,两个参数一样重要,那么等高线图和优化过程如下:

在这里插入图片描述

​ 可以明显看出,收敛速度加快

4.2 最大最小值归一化

​ 公式如下:

在这里插入图片描述

​ 特点:

  • 不会改变数据原始分布,只是将值缩放到[0,1]之间
  • 值都大于等于0(对于神经网络来说容易导致值偏置)
  • 对异常值敏感(比如一个非常大的最大值,但是其他数值都比较小,会导致归一化异常)

4.3 z-score归一化

​ 公式如下:

在这里插入图片描述

​ 特点:

  • 改变数据原始分布,让数据符合均值为u、标准差σ的分布
  • 值有正有负

5. 拟合

5.1 含义

​ 拟合这个概念本身是对于回归问题来说的。比如只有几个点:

在这里插入图片描述

​ 让你去用条线满足这三个点,你肯定能想到一条二次曲线,如下图:

在这里插入图片描述

​ 这就是拟合。但是在实际中,拟合并不局限于回归问题,还可以用于分类任务。

5.2 分类

  • 欠拟合
    • 拟合得不到位,相当于还没有学习完
  • 过拟合
    • 拟合得过好,相当于考试只会刚刚学习过的题目,变一点就不会了
  • 正常拟合
    • 正常状况,不仅会刚刚考试的题目,变一点点也是会做的(但是不一定作对而已)

6. 正则化

​ 看我这篇文章,说得很详细——深入机器学习1:详解正则表达式。

7. 优化器/梯度下降算法

​ 我们都知道,机器学习/深度学习是来解决数据问题的,特别是大数据问题。而对于大数据问题,有一个很难的点就是很难求出解析解。针对这种情况,就提出了各种各样的优化器,这里我们来说说其中最典型的梯度下降算法。

​ 对于一段山势图:

在这里插入图片描述

​ 假设,你在四角星的位置,那么问:如何你才能最快的下山?这个答案显而易见,就是走梯度方向

​ 那么将上述这段话体现为数学公式,如下:

在这里插入图片描述

​ 其中θ是我们的待优化参数,α是我们下山步长,称之为学习率J(θ)就是损失函数,对其求导就是梯度方向。

​ 其可以分为三类:

  • 批量梯度下降算法
    • 每次对全部数据进行梯度下降算法
  • 随机梯度下降算法
    • 每次对单个数据进行梯度下降算法
  • 小批量梯度下降算法
    • 每次对一批次的数据进行梯度下降算法

​ 不难看出,其具有一定的缺点:

  • 易震荡
    • 即容易出现在波谷的位置左右横跳,找不到最佳值
  • 可能只能找到局部最优解
  • 参数不易设置并且参数单一,不能变化

8. 数据划分方法

​ 这里说说数据集的划分。

8.1 训练集、验证集与测试集:

​ 训练集,即用于机器学习模型训练的数据集合。这里补充一下,训练有时候不仅仅训练一次,有时候可以对数据进行多次训练

​ 验证集,每次训练完毕后用于验证训练效果如何。

​ 测试集,所有训练完后用于检测模型效果如何,这是模拟真实使用情景。

补充说明:验证集一般在深度学习中常用,机器学习还是用得比较少。

8.2 留出法

​ 直接将数据集划分为两个互斥的集合,一个作为训练集,一个作为测试机,常用的比例为7/3、8/2

8.3 交叉验证

​ 随机将训练样本拆分成K个互不相交大小相同的子集,然后用K-1个子集作为训练集训练模型,用剩余的子集验证模型,对K中选择重复进行,最终选出K次测评中的平均测试误差最小的模型。常用的k值有 5、10、20等。

​ 比如,5折交叉验证如下图所示:

在这里插入图片描述

9. 编程语言

​ 想要实现机器学习其实有很多编程语言都可以,不过现在主流的还是python,因此推荐大家使用python进行编程。而在python中主要实现机器学习的库是sklearn,这个库集成了大部分的常见机器学习算法,使用起来非常简单,想要了解的可以看我这篇文章。

10. 类别不平衡问题

10.1 含义

​ 有时候我们拿到的数据,A类别有400条,B类别只有100条,这样的数据,我直接定义一个学习器只输出A类别,它的准确率都有80%。因此,针对这样类别不平衡的数据(分类数据),我们需要进行数据的平衡处理。

10.2 处理方法

降采样

​ 有一个最简单的思路:把数据多的类别降采样到和类别少的一样的数据量即可。比如上面我们直接从400个A数据中抽样100个A数据,这样A和B的数据量就相同了。

​ 它的优缺点非常明显:

  • 优点
    • 计算开销小,思路简单
  • 缺点
    • 丢弃了很多数据,导致训练样本集合比初始小很多
    • 另外,有时候数据量本身就少,你还降采样,不合适

过采样

​ 好的,不能降采样,那么我们直接对数据量少的类别过采样总行吧。

​ 但是,如何过采样呢?最简单的思路就是重复一些样本,但是这样非常容易导致过拟合,比如你100条B类别,现在你重复采样,变为了400条B类别,最低的比例都是每条数据重复4次。

​ 因此,这样的思路不可取,而常用的过采样思路是SMOTE算法,它通过对训练集的少样本对象进行差值计算来产生新的样例

基于学习的策略

​ 第三种思路是基于学习的策略来调整。

​ 一个思路如下:

​ 我们知道在分类的时候,实际上是把模型输出值y与一个阈值进行比较(比如0.5),大于这个阈值则为正例,小于则为负例。那么,几率y/1-y就是正例概率与负例概率的比值,原先针对y阈值为0.5,那么这里变为了1(0.5 / (1-0.5) = 1)。

​ 而由于正反例数据量不同,我们可以设置一个观测几率,其值为m+ / m-,其中m+表示正例数量,m-表示负例数量

​ 那么,可以认为:(下式是关注了数量关系)

y/1-y   >   m+/1- ,认为是正例 

​ 但是,实际上却是:(下式只是符合客观印象)

y/1-y   >   1 ,认为是正例

​ 因此,可以做出一定的修整:

在这里插入图片描述

基于上述原理,我们可以先让模型直接学习不平衡的数据,但是在进行决策的时候按照上述公式进行决策,这样相当于对数据进行了一定程度的缩放,实现了解决类别不平衡的目的

11. 评价指标

11.1 回归任务评价指标

​ 即我们前面讲解过的MAE、MSE等都是它的评价指标,主要衡量真实值与预测值之间的差距

​ 除此之外,还有一个评价指标,衡量拟合程度好坏的指标,称之为相关系数/决定系数,或者R2,公式如下:

在这里插入图片描述

11.2 混肴矩阵

分类任务常用评价指标

​ 矩阵形式如下:

在这里插入图片描述

​ 可以得出以下几个指标:

  • 精确度/查准率

在这里插入图片描述

  • 召回率/查全率

在这里插入图片描述

​ 两者是一对矛盾的量,一者大另外一者就偏小。

​ 将两者的值画作曲线,称之为P-R曲线

在这里插入图片描述

上图中一个曲线被另外一个曲线包住,说明了前者性能低于后者(从查全率和查准率的值可以看出来),而所谓的平衡点就是查全率等于查准率的点而已

12. 多分类任务

​ 我们算法讲解的时候,为了方便起见,一般都是以二分类任务为例子进行讲解的,那么二分类任务如何拓展到多分类任务呢?

12.1 One vs One

​ 简称为OvO(看起来就像表情包<_<),中文称为一对一。

​ 假设有N个类别,我们可以将这N个类别随机抽取两个组成一个二分类任务,那么一共有N*(N-1)/2个分类任务,也可以得到N*(N-1)/2个分类结果,那么最终的结果就是有投票表决,即哪一个类别出现的次数最多,说明就是哪个类别

12.2 One vs Rest

​ 简称OvR,中文称为一对剩余。

​ 即N个类别,每次抽取1个类别,并将其他类别作为一个整体,分类器就判断是否属于这个类别就行。那么,一共产生N个分类器,那么最终结果就是分类器输出该类别的类别(分类器输出Yes表示为该类别,No表示为其他类别)

12.3 Many vs Many

​ 简称MvM,中文称为多对多。

​ 即,每次抽取诺干为正例,诺干为负例,当然,抽取是根据一定规则抽取的,不过具体的规则有很多,这里就不细说了,有兴趣的可以看看西瓜书等资料。

13. 总结

​ 本篇主要讲解了一些机器学习的基础前置知识,当然上面的内容肯定没有包含全,后期我想起来了也会继续补充的。

​ 下一篇,讲解线性回归的原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/98938.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RS-485/RS-422收发器电路 DP3085 国产低成本替代MAX3085

DP3085是5V、半双工、15kV ESD 保护的 RS-485/RS-422 收发器电路&#xff0c;电路内部包含一路驱动器和一路接收器。 DP3085具有增强的摆率限制&#xff0c;助于降低输出 EMI 以及不匹配的终端连接引起的反射&#xff0c;实现 500kbps 的无误码数据传输。 DP3085芯片接收器输入…

使用Puppeteer进行游戏数据可视化

导语 Puppeteer是一个基于Node.js的库&#xff0c;可以用来控制Chrome或Chromium浏览器&#xff0c;实现网页操作、截图、测试、爬虫等功能。本文将介绍如何使用Puppeteer进行游戏数据的爬取和可视化&#xff0c;以《英雄联盟》为例。 概述 《英雄联盟》是一款由Riot Games开…

uni-app 之 图片

uni-app 之 图片 获取图片 v-bind 动态绑定 image.png <template><view><view>--- 获取图片1 ---<image src"../../static/img/tabbar_home1.png"></image></view><view>--- 获取图片2 v-bind 动态绑定---<image v-bi…

实现Android APK瘦身99.99%

摘要&#xff1a; 如何瘦身是 APK 的重要优化技术。APK 在安装和更新时都需要经过网络下载到设备&#xff0c;APK 越小&#xff0c;用户体验越好。本文作者通过对 APK 内在机制的详细解析&#xff0c;给出了对 APK 各组成成分的优化方法及技术&#xff0c;并实现了一个基本 APK…

90、00后严选出的数据可视化工具:奥威BI工具

90、00后主打一个巧用工具&#xff0c;绝不低效率上班&#xff0c;因此当擅长大数据智能可视化分析的BI数据可视化工具出现后&#xff0c;自然而然地就成了90、00后职场人常用的数据可视化工具。 奥威BI工具三大特点&#xff0c;让职场人眼前一亮&#xff01; 1、零编程&…

MyBatis-Plus深入 —— 条件构造器与插件管理

前言 在前面的文章中&#xff0c;荔枝梳理了一个MyBatis-Plus的基本使用、配置和通用Service接口&#xff0c;我们发现在MyBatis-Plus的辅助增强下我们不再需要通过配置xml文件中的sql语句来实现基本的sql操作了&#xff0c;不愧是最佳搭档&#xff01;在这篇文章中&#xff0c…

关于使用RT-Thread系统读取stm32的adc无法连续转换的问题解决

关于使用RT-Thread系统读取stm32的adc无法连续转换的问题解决 今天发现rt系统的adc有一个缺陷&#xff08;也可能是我移植的方法有问题&#xff0c;这就不得而知了&#xff01;&#xff09;&#xff0c;就是只能单次转换&#xff0c;事情是这样的&#xff1a; 我在stm32的RT-T…

开源照片管理服务LibrePhotos

本文是为了解决网友 赵云遇到的问题&#xff0c;顺便折腾的。虽然软件跑起来了&#xff0c;但是他遇到的问题&#xff0c;超出了老苏的认知。当然最终问题还是得到了解决&#xff0c;不过与 LibrePhotos 无关&#xff1b; 什么是 LibrePhotos ? LibrePhotos 是一个自托管的开源…

CentOS7安装时直接跳过了安装信息摘要页面的解决方法

最近在配置Hadoop虚拟机的时候&#xff0c;创建的centos7虚拟机在安装信息摘要时直接自动跳过&#xff0c;直接跳到设置用户名和密码&#xff0c;在重复多次的重新删除安装后发现了问题所在&#xff1a; 在进行到选择操作系统来源时&#xff0c;注意是否出现“该操作系统将使用…

数据结构零基础入门篇(C语言实现)

前言&#xff1a;数据结构属于C学习中较难的一部分&#xff0c;对应学习者的要求较高&#xff0c;如基础不扎实&#xff0c;建议着重学习C语言中的指针和结构体&#xff0c;万丈高楼平地起。 一&#xff0c;链表 1&#xff09;单链表的大致结构实现 用C语言实现链表一般是使…

树莓 LUMA-OLED.EXAMPLE使用

详细介绍在文件目录下的README.rst中 第一步 $ sudo usermod -a -G i2c,spi,gpio pi //好像没什么用 $ sudo apt install python3-dev python3-pip python3-numpy libfreetype6-dev libjpeg-dev build-essential //安装依赖包&#xff0c;树莓派中好像已经有了 $ sudo a…

【C++ 二叉搜索树】

目录 1.什么是二叉搜索树2.构建二叉搜索树2.1首先搭建树的框架2.2搭建搜索树的框架 3.二叉搜索树的插入3.1非递归式插入3.2递归式插入 4.二叉搜索树的查找4.1非递归查找4.2递归查找 5.二叉搜索树的删除5.1非递归删除5.2递归删除 6.整个代码实现 1.什么是二叉搜索树 简单来讲就…