高基数类别特征预处理:平均数编码 | 京东云技术团队

一 前言

对于一个类别特征,如果这个特征的取值非常多,则称它为高基数(high-cardinality)类别特征。在深度学习场景中,对于类别特征我们一般采用Embedding的方式,通过预训练或直接训练的方式将类别特征值编码成向量。在经典机器学习场景中,对于有序类别特征,我们可以使用LabelEncoder进行编码处理,对于低基数无序类别特征(在lightgbm中,默认取值个数小于等于4的类别特征),可以采用OneHotEncoder的方式进行编码,但是对于高基数无序类别特征,若直接采用OneHotEncoder的方式编码,在目前效果比较好的GBDT、Xgboost、lightgbm等树模型中,会出现特征稀疏性的问题,造成维度灾难, 若先对类别取值进行聚类分组,然后再进行OneHot编码,虽然可以降低特征的维度,但是聚类分组过程需要借助较强的业务经验知识。本文介绍一种针对高基数无序类别特征非常有效的预处理方法:平均数编码(Mean Encoding)。在很多数据挖掘类竞赛中,有许多人使用这种方法取得了非常优异的成绩。

二 原理

平均数编码,有些地方也称之为目标编码(Target Encoding),是一种基于目标变量统计(Target Statistics)的有监督编码方式。该方法基于贝叶斯思想,用先验概率和后验概率的加权平均值作为类别特征值的编码值,适用于分类和回归场景。平均数编码的公式如下所示:

其中:

1. prior为先验概率,在分类场景中表示样本属于某一个_y__i_的概率

​其中_n__y__i_​​表示y =_y__i_​时的样本数量,_n__y_​表示y的总数量;在回归场景下,先验概率为目标变量均值:

2. posterior为后验概率,在分类场景中表示类别特征为k时样本属于某一个_y__i_​的概率

在回归场景下表示 类别特征为k时对应目标变量的均值。

3. _λ_为权重函数,本文中的权重函数公式相较于原论文做了变换,是一个单调递减函数,函数公式:

其中 输入是特征类别在训练集中出现的次数n,权重函数有两个参数:

① k:最小阈值,当n = k时,λ= 0.5,先验概率和后验概率的权重相同;当n < k时,λ> 0.5, 先验概率所占的权重更大。

② f:平滑因子,控制权重函数在拐点处的斜率,f越大,曲线坡度越缓。下面是k=1时,不同f对于权重函数的影响:

由图可知,f越大,权重函数S型曲线越缓,正则效应越强。

对于分类问题,在计算后验概率时,目标变量有C个类别,就有C个后验概率,且满足

一个 _y__i_​ 的概率值必然和其他 _y__i_​ 的概率值线性相关,因此为了避免多重共线性问题,采用平均数编码后数据集将增加C-1列特征。对于回归问题,采用平均数编码后数据集将增加1列特征。

三 实践

平均数编码不仅可以对单个类别特征编码,也可以对具有层次结构的类别特征进行编码。比如地区特征,国家包含了省,省包含了市,市包含了街区,对于街区特征,每个街区特征对应的样本数量很少,以至于每个街区特征的编码值接近于先验概率。平均数编码通过加入不同层次的先验概率信息解决该问题。下面将以分类问题对这两个场景进行展开:

1. 单个类别特征编码:

在具体实践时可以借助category_encoders包,代码如下:

import pandas as pd
from category_encoders import TargetEncoderdf = pd.DataFrame({'cat': ['a', 'b', 'a', 'b', 'a', 'a', 'b', 'c', 'c', 'd'], 'target': [1, 0, 0, 1, 0, 0, 1, 1, 0, 1]})
te = TargetEncoder(cols=["cat"], min_samples_leaf=2, smoothing=1)
df["cat_encode"] = te.transform(df)["cat"]
print(df)
# 结果如下:cat	target	cat_encode
0	a	1	0.279801
1	b	0	0.621843
2	a	0	0.279801
3	b	1	0.621843
4	a	0	0.279801
5	a	0	0.279801
6	b	1	0.621843
7	c	1	0.500000
8	c	0	0.500000
9	d	1	0.634471

2. 层次结构类别特征编码:

对以下数据集,方位类别特征具有{‘N’: (‘N’, ‘NE’), ‘S’: (‘S’, ‘SE’), ‘W’: ‘W’}层级关系,以compass中类别NE为例计算_y__i_​=1,k = 2 f = 2时编码值,计算公式如下:

其中_p_1为HIER_compass_1中类别N的编码值,计算可以参考单个类别特征编码: 0.74527,posterior=3/3=1,λ= 0.37754 ,则类别NE的编码值:0.37754 * 0.74527 + (1 - 0.37754)* 1 = 0.90383。

代码如下:

from category_encoders  import TargetEncoder
from category_encoders.datasets import load_compassX, y = load_compass()
# 层次参数hierarchy可以为字典或者dataframe
# 字典形式
hierarchical_map = {'compass': {'N': ('N', 'NE'), 'S': ('S', 'SE'), 'W': 'W'}}
te = TargetEncoder(verbose=2, hierarchy=hierarchical_map, cols=['compass'], smoothing=2, min_samples_leaf=2)
# dataframe形式,HIER_cols的层级顺序由顶向下
HIER_cols = ['HIER_compass_1']
te = TargetEncoder(verbose=2, hierarchy=X[HIER_cols], cols=['compass'], smoothing=2, min_samples_leaf=2)
te.fit(X.loc[:,['compass']], y)
X["compass_encode"] = te.transform(X.loc[:,['compass']])
X["label"] = y
print(X)# 结果如下,compass_encode列为结果列:index	compass	HIER_compass_1	compass_encode	label
0	1	N	N	0.622636	1
1	2	N	N	0.622636	0
2	3	NE	N	0.903830	1
3	4	NE	N	0.903830	1
4	5	NE	N	0.903830	1
5	6	SE	S	0.176600	0
6	7	SE	S	0.176600	0
7	8	S	S	0.460520	1
8	9	S	S	0.460520	0
9	10	S	S	0.460520	1
10	11	S	S	0.460520	0
11	12	W	W	0.403328	1
12	13	W	W	0.403328	0
13	14	W	W	0.403328	0
14	15	W	W	0.403328	0
15	16	W	W	0.403328	1

注意事项:

采用平均数编码,容易引起过拟合,可以采用以下方法防止过拟合:

  • 增大正则项f
  • k折交叉验证

以下为自行实现的基于k折交叉验证版本的平均数编码,可以应用于二分类、多分类、回归场景中对单一类别特征或具有层次结构类别特征进行编码,该版本中用prior对unknown类别和缺失值编码。

from itertools import product
from category_encoders  import TargetEncoder
from sklearn.model_selection import StratifiedKFold, KFoldclass MeanEncoder:def __init__(self, categorical_features, n_splits=5, target_type='classification', min_samples_leaf=2, smoothing=1, hierarchy=None, verbose=0, shuffle=False, random_state=None):"""Parameters----------categorical_features: list of strthe name of the categorical columns to encode.n_splits: intthe number of splits used in mean encoding.target_type: str,'regression' or 'classification'.min_samples_leaf: intFor regularization the weighted average between category mean and global mean is taken. The weight isan S-shaped curve between 0 and 1 with the number of samples for a category on the x-axis.The curve reaches 0.5 at min_samples_leaf. (parameter k in the original paper)smoothing: floatsmoothing effect to balance categorical average vs prior. Higher value means stronger regularization.The value must be strictly bigger than 0. Higher values mean a flatter S-curve (see min_samples_leaf).hierarchy: dict or dataframeA dictionary or a dataframe to define the hierarchy for mapping.If a dictionary, this contains a dict of columns to map into hierarchies.  Dictionary key(s) should be the column name from Xwhich requires mapping.  For multiple hierarchical maps, this should be a dictionary of dictionaries.If dataframe: a dataframe defining columns to be used for the hierarchies.  Column names must take the form:HIER_colA_1, ... HIER_colA_N, HIER_colB_1, ... HIER_colB_M, ...where [colA, colB, ...] are given columns in cols list.  1:N and 1:M define the hierarchy for each column where 1 is the highest hierarchy (top of the tree).  A single column or multiple can be used, as relevant.verbose: intinteger indicating verbosity of the output. 0 for none.shuffle : bool, default=Falserandom_state : int or RandomState instance, default=NoneWhen `shuffle` is True, `random_state` affects the ordering of theindices, which controls the randomness of each fold for each class.Otherwise, leave `random_state` as `None`.Pass an int for reproducible output across multiple function calls."""self.categorical_features = categorical_featuresself.n_splits = n_splitsself.learned_stats = {}self.min_samples_leaf = min_samples_leafself.smoothing = smoothingself.hierarchy = hierarchyself.verbose = verboseself.shuffle = shuffleself.random_state = random_stateif target_type == 'classification':self.target_type = target_typeself.target_values = []else:self.target_type = 'regression'self.target_values = Nonedef mean_encode_subroutine(self, X_train, y_train, X_test, variable, target):X_train = X_train[[variable]].copy()X_test = X_test[[variable]].copy()if target is not None:nf_name = '{}_pred_{}'.format(variable, target)X_train['pred_temp'] = (y_train == target).astype(int)  # classificationelse:nf_name = '{}_pred'.format(variable)X_train['pred_temp'] = y_train  # regressionprior = X_train['pred_temp'].mean()te = TargetEncoder(verbose=self.verbose, hierarchy=self.hierarchy, cols=[variable], smoothing=self.smoothing, min_samples_leaf=self.min_samples_leaf)te.fit(X_train[[variable]], X_train['pred_temp'])tmp_l = te.ordinal_encoder.mapping[0]["mapping"].reset_index()tmp_l.rename(columns={"index":variable, 0:"encode"}, inplace=True)tmp_l.dropna(inplace=True)tmp_r = te.mapping[variable].reset_index()if self.hierarchy is None:tmp_r.rename(columns={variable: "encode", 0:nf_name}, inplace=True)else:tmp_r.rename(columns={"index": "encode", 0:nf_name}, inplace=True)col_avg_y = pd.merge(tmp_l, tmp_r, how="left",on=["encode"])col_avg_y.drop(columns=["encode"], inplace=True)col_avg_y.set_index(variable, inplace=True)nf_train = X_train.join(col_avg_y, on=variable)[nf_name].valuesnf_test = X_test.join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name].valuesreturn nf_train, nf_test, prior, col_avg_ydef fit(self, X, y):""":param X: pandas DataFrame, n_samples * n_features:param y: pandas Series or numpy array, n_samples:return X_new: the transformed pandas DataFrame containing mean-encoded categorical features"""X_new = X.copy()if self.target_type == 'classification':skf = StratifiedKFold(self.n_splits, shuffle=self.shuffle, random_state=self.random_state)else:skf = KFold(self.n_splits, shuffle=self.shuffle, random_state=self.random_state)if self.target_type == 'classification':self.target_values = sorted(set(y))self.learned_stats = {'{}_pred_{}'.format(variable, target): [] for variable, target inproduct(self.categorical_features, self.target_values)}for variable, target in product(self.categorical_features, self.target_values):nf_name = '{}_pred_{}'.format(variable, target)X_new.loc[:, nf_name] = np.nanfor large_ind, small_ind in skf.split(y, y):nf_large, nf_small, prior, col_avg_y = self.mean_encode_subroutine(X_new.iloc[large_ind], y.iloc[large_ind], X_new.iloc[small_ind], variable, target)X_new.iloc[small_ind, -1] = nf_smallself.learned_stats[nf_name].append((prior, col_avg_y))else:self.learned_stats = {'{}_pred'.format(variable): [] for variable in self.categorical_features}for variable in self.categorical_features:nf_name = '{}_pred'.format(variable)X_new.loc[:, nf_name] = np.nanfor large_ind, small_ind in skf.split(y, y):nf_large, nf_small, prior, col_avg_y = self.mean_encode_subroutine(X_new.iloc[large_ind], y.iloc[large_ind], X_new.iloc[small_ind], variable, None)X_new.iloc[small_ind, -1] = nf_smallself.learned_stats[nf_name].append((prior, col_avg_y))return X_newdef transform(self, X):""":param X: pandas DataFrame, n_samples * n_features:return X_new: the transformed pandas DataFrame containing mean-encoded categorical features"""X_new = X.copy()if self.target_type == 'classification':for variable, target in product(self.categorical_features, self.target_values):nf_name = '{}_pred_{}'.format(variable, target)X_new[nf_name] = 0for prior, col_avg_y in self.learned_stats[nf_name]:X_new[nf_name] += X_new[[variable]].join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name]X_new[nf_name] /= self.n_splitselse:for variable in self.categorical_features:nf_name = '{}_pred'.format(variable)X_new[nf_name] = 0for prior, col_avg_y in self.learned_stats[nf_name]:X_new[nf_name] += X_new[[variable]].join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name]X_new[nf_name] /= self.n_splitsreturn X_new

四 总结

本文介绍了一种对高基数类别特征非常有效的编码方式:平均数编码。详细的讲述了该种编码方式的原理,在实际工程应用中有效避免过拟合的方法,并且提供了一个直接上手的代码版本。

作者:京东保险 赵风龙

来源:京东云开发者社区 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/99364.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ES】笔记-Set集合实践

JS <script>let arr[1,2,3,4,5,4,3,2,1];//1.数组去重let result0[...new Set(arr)];console.log(数组去重${result0});//2.交集let arr2[4,5,6,5,6];let result[...new Set(arr)].filter(item>{let s2new Set(arr2);//4 5 6if(s2.has(item)){return true;}else{retur…

Direct3D绘制旋转立方体例程

初始化文件见Direct3D的初始化_direct3dcreate9_寂寂寂寂寂蝶丶的博客-CSDN博客 D3DPractice.cpp #include <windows.h> #include "d3dUtility.h" #include <d3dx9math.h>IDirect3DDevice9* Device NULL; IDirect3DVertexBuffer9* VB NULL; IDirect3…

基于Linux并结合socket网络编程的ftp服务器的实现

项目需求 客户端能够通过调用“get”指令&#xff0c;来获取服务器的文件客户端能通过“server_ls”指令&#xff0c;来获取服务器路径下的文件列表客户端能通过“server_cd”指令&#xff0c;进入服务器路径下的某文件夹客户端可以通过“upload”指令&#xff0c;上传自己的本…

从0到1实现播放控制器

这系列文章主要讲诉如何从0到1使用QT实现带时间显示、滚动字幕等的自定义配置视频播放控制器。平时我们乘坐地铁经常看到各条线的播放控制器都大同小异。其实都是通过QT等界面开发软件来实现的。 在具体开发之前&#xff0c;需要明确我们需要做什么&#xff1f; 1. 开发一个可…

uni-app开发小程序,radio单选按钮,点击可以选中,再次点击可以取消

一、实现效果&#xff1a; 二、代码实现&#xff1a; 不适用官方的change方法&#xff0c;自己定义点击方法。 动态判断定义的值是否等于遍历的值进行回显&#xff0c;如果和上一次点击的值一样&#xff0c;就把定义的值改为null <template><view><radio-group&…

【广州华锐互动】利用AR远程指导系统进行机械故障排查,实现远程虚拟信息互动

随着工业自动化和智能化的不断发展&#xff0c;机械故障诊断已经成为了工业生产中的重要环节。为了提高故障诊断的准确性和效率&#xff0c;近年来&#xff0c;AR&#xff08;增强现实&#xff09;远程协助技术逐渐应用于机械故障诊断领域。本文将探讨AR远程协助技术在机械故障…

docker打包vue vite前端项目

打包vue vite 前端项目 1.打包时将测试删除 2.修改配置 3.打包项目 npm run build 显示成功&#xff08;黄的也不知道是啥&#xff09; 打包好的前端文件放入 4.配置 default.conf upstream wms-app {server 你自己的ip加端口 ;server 192.168.xx.xx:8080 ; } server { …

mysql数据库使用技巧整理

查看当前数据库已建立的client连接 mysql中执行 -- 查看数据库允许的最大连接数&#xff0c;不是实时正在使用的连接数 SHOW VARIABLES LIKE max_connections; mysql中执行 -- 查看当前数据库client的连接数 SHOW STATUS LIKE Threads_connected; mysql中执行 -- 查看具…

Linux中安装MySQL5.7.42

1. 首先&#xff0c;下载mysql5.7.42的安装包&#xff08;下方是下载地址&#xff09;&#xff0c;选择红色框框的下载&#xff08;注意的是&#xff0c;这个链接只提供5.7的版本下载&#xff0c;可能还会更新&#xff0c;不一定打开就是5.7.42的版本&#xff0c;后续可能会有4…

LeetCode 热题 100——找到字符串中所有字母异位词(滑动窗口)

题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目解析 该题目的意思简而言之就是说&#xff0c;从s字符串中寻找与p字符串含有相同字符(次数和种类均相同)的子串&#xff0c;并且将他们的首字符下标集合进数组中进行返回。 滑动窗口解…

AndroidTV端:酒店扫码认证投屏DLNA

被老板叼了几次了&#xff0c;最近实在忍不了&#xff0c;准备离职&#xff1b; 但是担心离职后长时间没有办法找到工作 就想贡献一套平时琢磨出来的程序&#xff0c;请各位有能力的话带我熬过这凛冽的寒冬。 目前写出来的&#xff0c;有三个端&#xff1a;安卓TV端&#xf…

【Windows 常用工具系列 11 -- 笔记本F5亮度调节关闭】

文章目录 笔记本 F 按键功能恢复 笔记本 F 按键功能恢复 使用笔记本在进行网页浏览时&#xff0c;本想使用F5刷新下网页&#xff0c;结果出现了亮度调节&#xff0c;如下图所示&#xff1a; 所以就在网上查询是否有解决这个问题的帖子&#xff0c;结果还真找到了&#xff1a;…