Yolov5的tensorRT加速(python)

地址:https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5
下载yolov5代码

方法一:使用torch2trt

安装torch2trt与tensorRT

参考博客:https://blog.csdn.net/dou3516/article/details/124538557

  • 先从github拉取torch2trt源码
    https://github.com/NVIDIA-AI-IOT/torch2trt
cd torch2trt
python setup.py install

运行的时候会报错

ModuleNotFoundError: No module named ‘tensorrt‘

则需要python安装tensorRT,这一步我卡了很久,踩了坑,因为根据网上的解决办法,都类似于下面这种pip install tensorrt或者pip install nvidia-tensorrt,然后执行这种命令会没有明确报错信息就终止了
在这里插入图片描述
然后我考虑是不是因为不是在管理员权限下运行的原因,因为有的python库是需要现场编译的,如果没有足够权限会编译失败,例如lanms库便是如此,我之前有写过博客详细解析如何编译lanms库(http://t.csdn.cn/PXD8v)
但是在更改管理员权限后仍然会报相同的错,说明不i是这个问题。
然后我突然转变了思路,不是去搜索这个报错的解决办法,而是直接去搜索如何安装python版本的tensorRT,找到了解决问题的方法http://t.csdn.cn/ePPqa,前提是你得事先安装好cuda,cudnn,tensorRT,相关教程我也在博客中提到过(http://t.csdn.cn/nMr7o)
简单的说就是找到安装tensorRT时下载的文件夹
在这里插入图片描述
在这里插入图片描述
我的python是3.7版本所以选择tensorrt-8.4.1.5-cp37-none-win_amd64.whl

pip install tensorrt-8.4.1.5-cp37-none-win_amd64.whl

即可将python版本的tensorrt安装完成

  • 测试是否安装完成
    在这里插入图片描述
    如果import tensorrt没有报错,就成功了。
    继续
python setup.py install

在这里插入图片描述
torch2trt也安装完成

  • 使用测试代码测试demo能否成功跑通
import torch
from torch2trt import torch2trt
from torchvision.models.alexnet import alexnet
import time# create some regular pytorch model...
model = alexnet(pretrained=True).eval().cuda()# create example data
x = torch.ones((1, 3, 224, 224)).cuda()# convert to TensorRT feeding sample data as input
model_trt = torch2trt(model, [x])t0 = time.time()
y = model(x)
t1 = time.time()
y_trt = model_trt(x)
t2 = time.time()print(t2-t1,t1-t0)
# check the output against PyTorch
print(torch.max(torch.abs(y - y_trt)))

跑这个demotorch2trt倒是没有问题,但是报错显示cuda用不了
在这里插入图片描述
然后在网上搜到用这几句进行测试

import torch
print(torch.__version__)
print(torch.cuda.is_available())

打印出以下结果,首先要考虑的是是否安装了cuda与cudnn,前面我已经明确安装好了,所以接下来考虑的是我安装成pytorch的cpu版本了,我应该再安装gpu版本
在这里插入图片描述
登录pytorch官网 https://pytorch.org/get-started/locally/#supported-windows-distributions
在这里插入图片描述
根据cuda版本复制命令进行下载,如果不是当前页面的版本,点我画的绿色框位置找以前的cuda版本进行下载
在这里插入图片描述
我的cuda是11.6,平台是windows用pip下载,所以我复制这个命令

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

下载成功后再测试
在这里插入图片描述
说明pytorch的gpu版本安装完成
参考博客:https://blog.csdn.net/moyong1572/article/details/119438286

  • 然后再跑demo,出现结果
    在这里插入图片描述
    则说明环境都没有问题了。

跑通yolov5原本代码

源代码地址:https://github.com/ultralytics/yolov5
首先

python detect.py

在这里插入图片描述
找不到模型会直接在github下载,然而大家也知道在github下的一般很难下载的动,
在这里插入图片描述
又看到代码知可输入参数,于是直接在命令行指定模型和测试图片

python detect.py --weights D:\wjp_code\tensorrtx-master\yolov5-master\model\yolov5s.pt --source D:\wjp_code\tensorrtx-master\yolov5-master\data\images\zidane.jpg

又开始报
在这里插入图片描述
参考了一个博客很好的解决了这个问题https://blog.csdn.net/Joseph__Lagrange/article/details/108255992
就是使用的模型有点问题,不要用27.1MB的,而是要用14.4MB的,下载地址在这里https://github.com/ultralytics/yolov5/releases/tag/v3.0
在这里插入图片描述
然后再运行上面的指令
在这里插入图片描述
没有报错,运行成功。

改yolov5代码,增加调用tensorrt的功能

参考了https://blog.csdn.net/qq_34919792/article/details/120650792
修改模型的部分

1.第一处修改(detect.py)

先引入需要的库和之前引出来的代码写成函数备用,有很多懒得从网络读了比如stride,就直接定义了。
在这里插入图片描述

#-----------------------------1----------------------------------------------
from torch2trt import torch2trt
import yamldef _make_grid(nx=20, ny=20):yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()def translate_to_pred(x,anchor):z = []stride = [8,16,32]for i in range(len(x)):bs, na, ny, nx, no = x[i].shapegrid = _make_grid(nx, ny).to(x[i].device)y = x[i].sigmoid()y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + grid) * stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor[i]  # whz.append(y.view(bs, -1, no))return torch.cat(z, 1)
#---------------------------------------------------------------------------

2.第二处修改(detect.py)

在进入处理之前读取下anchor和设置下状态变量
在这里插入图片描述

#------------------------2---------------------------------------------------------------------# for tensorRTset_model = 1 #为了在第一张图片完成模型转换,后面就不处理了。with open("models/hub/anchors.yaml") as f:yaml_inf = yaml.load(f, Loader=yaml.SafeLoader)anchors = torch.tensor(yaml_inf["anchors_p5_640"]).float().view(3, 1, -1, 1, 1, 2).cuda()# for path, img, im0s, vid_cap in dataset: 加在这一句之前
#---------------------------------------------------------------------------------------------

3.第三处修改(detect.py)

修改模型推理
在这里插入图片描述

            #--------------------3---------------------------------------------------------------if set_model == 1:model_trt = torch2trt(model, [im])set_model = 0pred = model_trt(im)pred = translate_to_pred(pred,anchors)#-----------------------------------------------------------------------------------

4.第四处修改(models/yolo.py)

修改里面的Detect的forward,把不能加速的拿出来
在这里插入图片描述

    def forward(self, x):z = []self.training != self.exportfor i in range(self.nl):x[i] = self.m[i](x[i])bs, _, ny, nx = x[i].shapex[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0,1,3,4,2).contiguous()return x

再用命令运行

python detect.py --weights D:\wjp_code\tensorrtx-master\yolov5-master\model\yolov5s.pt --source D:\wjp_code\tensorrtx-master\yolov5-master\data\images\zidane.jpg

能成功跑通了,但是识别结果有问题,稍后再处理
在这里插入图片描述
其他算子的解决办法https://blog.csdn.net/weixin_44886683/article/details/116590851
Hardswish算子的解决办法(没看懂)https://github.com/NVIDIA-AI-IOT/torch2trt/issues/426
官方conventers地址 https://nvidia-ai-iot.github.io/torch2trt/master/converters.html

方法一:pt转onnx再转成trt推理引擎(pytorch model–>onnx file–>TensorRT engine)

参考博客https://blog.csdn.net/qq_39056987/article/details/111362848
源码地址
https://github.com/TrojanXu/yolov5-tensorrt
c++版本
https://zhuanlan.zhihu.com/p/430470397
在这里插入图片描述
改一下模型和图片位置就可以直接跑了
我这边跑的结果输出为空,还需要找一下原因
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/100288.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Power BI的发布到web按钮怎么没有?有人知道怎么办吗??????

Power BI的发布到web按钮怎么没有?有人知道怎么办吗????? .

docker启动paddlespeech服务,并使用接口调用

一、检查docker容器是否启动 1.输入命令 systemctl status docker 启动 systemctl start docker 守护进程重启 sudo systemctl daemon-reload 重启docker服务 systemctl restart docker 重启docker服务 sudo service docker restart 关闭docker service docker…

使用 Python 的高效相机流

一、说明 让我们谈谈在Python中使用网络摄像头。我有一个简单的任务,从相机读取帧,并在每一帧上运行神经网络。对于一个特定的网络摄像头,我在设置目标 fps 时遇到了问题(正如我现在所理解的——因为相机可以用 mjpeg 格式运行 30…

指针进阶(1)

指针进阶 朋友们,好久不见,这次追秋给大家带来的是内容丰富精彩的指针知识的拓展内容,喜欢的朋友们三连走一波!!! 字符指针 在指针的类型中我们知道有一种指针类型为字符指针 char* ; 使用方法如…

2023.8.1 Redis 的基本介绍

目录 Redis 的介绍 Redis 用作缓存和存储 session 信息 Redis 用作数据库 消息队列 消息队列是什么? Redis 用作消息队列 Redis 的介绍 特点: 内存中存储数据:奠定了 Redis 进行访问和存储时的快可编程性:支持使用 Lua 编写脚…

数据分析综述

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

bit、bin 、mcs文件区别

FPGA里面的可执行文件都涉及到 *.bit, *.mcs, *.bin 和 *.elf。 bit文件 bit 文件一般用于JTAG在线进行调试的时候,是把bit文件是烧写到FPGA中进行在线调试。 bin文件 bin 文件是二进制文件,按顺序只包含原始字节流&#xff0c…

位运算 |(按位或) (按位与) ^(按位异或)

目录 文章目录:本章讲解的主要是刷题系列 1:首先会介绍 I & ^这三个操作符的作用,性质 2:三道使用位运算操作符的经典 笔试题(来自剑指offer) 题目链接如下: 1:136. 只出现一次的数字 - 力扣(LeetCode…

Python实现猎人猎物优化算法(HPO)优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…

肖sir__设计测试用例方法之等价类02_(黑盒测试)

设计测试用例方法之等价类02_(黑盒测试) 一、掌握常用的设计方法: 黑盒测试方法:等价类、边界值,状态迁移法、场景法、判定表、因果图、正交表,(7种) 经验测试方法:错误推测法、异常…

iOS 17中的Safari配置文件改变了游戏规则,那么如何设置呢

Safari在iOS 17中最大的升级是浏览配置文件——能够在一个应用程序中创建单独的选项卡和书签组。这些也可以跟随你的iPad和Mac,但在本指南中,我们将向你展示如何使用运行iOS 17的iPhone。 你可能有点困惑,为什么Safari中没有明显的位置可以添…

*** error 65: access violation at 0xFFFFFFF4 : no ‘write‘ permission怎么办

我发现是我的单片机型号设置错了,把debug里面的STM32F103ZET6修改为STM32F103ZE就可以正常运行了