计算机视觉的应用13-基于SSD模型的城市道路积水识别的应用项目

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用13-基于SSD模型的城市道路积水识别的应用项目。今年第11号台风“海葵”后部云团的影响,福州地区的降雨量突破了历史极值,多出地方存在严重的积水。城市道路积水是造成交通拥堵、车辆事故和城市排水系统过载的主要原因之一。因此,准确地识别城市道路上的积水情况对于城市交通管理和公共安全至关重要。本文基于SSD模型,提出了一种城市道路积水识别方法。
我们收集了大量城市道路积水的图像数据,并进行了标注。然后,我们利用深度学习技术,将这些图像数据输入到SSD模型中进行训练。通过优化损失函数,提高了模型在道路积水识别任务上的准确率。基于SSD模型的城市道路积水识别方法在实际应用中具有潜力,并能够为城市交通管理和公共安全提供有益的支持。
在这里插入图片描述

目录

  1. 项目背景与意义
  2. 训练数据样例
  3. SSD模型介绍
  4. 搭建SSD模型
  5. 模型训练与测试
  6. 代码实现
  7. 结论和未来工作

1. 项目背景与意义

随着城市化进程的加快,城市基础设施建设和维护的问题越来越突出,其中之一就是道路积水问题。当遇到台风与暴雨添加,持续性的降水就导致道路大面积积水,道路积水不仅影响交通,还可能引发交通事故,甚至对人的生命安全构成威胁。因此,及时有效地识别和处理道路积水问题具有重要意义。
传统的道路积水识别方法主要依赖于人工巡查,效率低下,而且无法实时发现和处理问题。因此,我们需要一种自动化的、高效的道路积水识别方法。近年来,深度学习在图像识别领域取得了显著的成果。特别是SSD模型,因其出色的目标检测和识别能力,被广泛应用于各种图像识别任务中。
本项目提出了一种基于SSD模型的道路积水识别方法。我们将该方法应用于道路图像,实现了高效准确的道路积水识别。

2. 训练数据样例

为了训练我们的模型,我们收集了大量的道路图像,其中包括有积水和没有积水的图像。每个图像都进行了标注,标注出图像中的积水区域。

以下是我们的一些训练数据样例:

Image1.jpg, "water", 14, 30, 56, 70
Image2.jpg, "water", 35, 50, 66, 90
Image3.jpg, "no_water", 0, 0, 0, 0
...

在上述数据中,每行代表一张图像。第一列是图像名称,第二列是图像的标签("water"表示有积水,"no_water"表示没有积水),第三到第六列是积水区域的边界框坐标。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. SSD模型介绍

SSD模型是一种深度学习的目标检测模型。与其他目标检测模型相比,SSD模型具有更高的检测速度和更好的检测效果。

SSD模型的主要特点是使用了多尺度的特征图来检测目标,并且在每个特征图上都使用了多种尺度和长宽比的默认边界框(default box)来预测目标。

SSD模型的训练主要包括两个部分:一部分是对默认边界框的位置进行回归,调整其与真实边界框的匹配程度;另一部分是对每个默认边界框进行分类,确定其是否包含目标。

SSD模型的原理:
1.特征提取:
SSD模型使用一个预训练的CNN作为基础网络,通常是VGGNet或ResNet等。给定输入图像 x x x,通过该基础网络可以得到一系列特征图(feature maps)。这些特征图包含了不同层次的语义信息,其中低层次特征图包含局部和细节信息,高层次特征图则包含更多的语义和上下文信息。
2. 多尺度特征图生成:
SSD模型在基础网络的不同层次上添加了额外的卷积层,以生成不同尺度的特征图。这些额外的卷积层被称为辅助卷积层(auxiliary convolutional layers)。每个辅助卷积层都会生成一组特征图,每个特征图对应一个固定的默认框。由于不同层次的特征图具有不同的感受野(receptive field),因此可以在不同尺度下检测目标。
3. 目标分类和定位:
对于每个默认框,SSD模型预测目标的类别概率以及边界框的位置。具体地,每个默认框会通过一系列卷积层和全连接层得到一个固定维度的特征表示,然后分别用于分类和回归任务。分类任务使用softmax函数计算每个类别的概率,回归任务则预测边界框的位置和大小。
4. 损失函数:
SSD模型采用了多任务损失函数来训练模型。该损失函数由两个部分组成:分类损失和定位损失。分类损失使用交叉熵损失函数来度量目标类别的预测误差,定位损失使用平滑L1损失函数来度量边界框位置的预测误差。最终的总损失是分类损失和定位损失的线性加权和。

通过对大规模标记的训练数据进行优化,SSD模型可以学习到有效的特征表示和目标检测能力。该模型在目标检测任务中具有良好的性能和实时性能。

SSD模型数学原理表达式:

  1. 特征提取:
    f = CNN ( x ) f = \text{{CNN}}(x) f=CNN(x)

  2. 多尺度特征图生成:
    d k = Conv k ( f ) d_k = \text{{Conv}}_k(f) dk=Convk(f)

  3. 目标分类和定位:
    p i , k = softmax ( c i , k ) p_{i,k} = \text{{softmax}}(c_{i,k}) pi,k=softmax(ci,k)
    b i , k = decode ( d i , k ) b_{i,k} = \text{{decode}}(d_{i,k}) bi,k=decode(di,k)

  4. 损失函数:
    L = λ cls L cls + λ loc L loc L = \lambda_{\text{{cls}}}L_{\text{{cls}}} + \lambda_{\text{{loc}}}L_{\text{{loc}}} L=λclsLcls+λlocLloc

其中, f f f表示特征图, d k d_k dk表示第 k k k个辅助卷积层的特征图, p i , k p_{i,k} pi,k表示第 i i i个默认框的类别概率, b i , k b_{i,k} bi,k表示第 i i i个默认框的边界框位置, L cls L_{\text{{cls}}} Lcls表示分类损失, L loc L_{\text{{loc}}} Lloc表示定位损失, λ cls \lambda_{\text{{cls}}} λcls λ loc \lambda_{\text{{loc}}} λloc为损失的权重。

4. 搭建SSD模型

在PyTorch框架下,我们可以方便地搭建SSD模型。以下是我们搭建SSD模型的代码:

import torch
from torch import nn
from ssd.modeling import registry
from .backbone import build_backbone
from .box_head import build_box_head@registry.DETECTORS.register('SSD')
class SSD(nn.Module):def __init__(self, cfg):super(SSD, self).__init__()self.backbone = build_backbone(cfg)self.box_head = build_box_head(cfg)def forward(self, images, targets=None):features = self.backbone(images)detections, detector_losses = self.box_head(features, targets)if self.training:return detector_lossesreturn detections

在上述代码中,我们首先定义了一个SSD类,该类继承自nn.Module。在SSD类的构造函数中,我们构造了backbone和box_head两个部分。backbone部分用于提取图像的特征,box_head部分用于从特征中检测目标。在SSD类的forward函数中,我们首先通过backbone提取了图像的特征,然后通过box_head从特征中检测出目标。如果是训练阶段,我们返回检测的损失;如果是测试阶段,我们返回检测的结果。

5. 模型训练与测试

模型的训练包括以下步骤:

1.读取训练数据
2. 将图像传入模型,得到检测的损失
3. 使用优化器优化损失,更新模型的参数
4. 重复以上步骤,直到模型的性能达到满意的程度

模型的测试包括以下步骤:

1.读取测试数据
2. 将图像传入模型,得到检测的结果
3. 与真实的结果进行比较,计算模型的性能指标
4. 重复以上步骤,对所有测试数据进行测试

6. 代码实现

我们模型训练和测试的代码实现:

import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import WaterDataset
from model import SSD
from loss import SSDLoss# 读取数据
dataset = WaterDataset('data/train.csv')
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)# 构建模型
model = SSD()
model = model.to('cuda')# 定义损失函数和优化器
criterion = SSDLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(100):for images, targets in data_loader:images = images.to('cuda')targets = targets.to('cuda')# 前向传播loss = model(images, targets)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 测试模型
model.eval()
with torch.no_grad():correct = 0total = 0for images, targets in data_loader:images = images.to('cuda')targets = targets.to('cuda')# 前向传播outputs = model(images)# 计算准确率total += targets.size(0)correct += (outputs == targets).sum().item()print('Test Accuracy: {}%'.format(100 * correct / total))

7. 结论和未来工作

本项目提出了一种基于SSD模型的道路积水识别方法,通过对大量道路图像的训练,实现了高效准确的道路积水识别。然而,我们的方法还有一些局限性。例如,我们的方法依赖于高质量的训练数据,而这些数据的获取和标注是一个耗时且困难的过程。此外,我们的方法在处理复杂场景(如雨天、夜晚等)的积水识别时,可能会有一些困难。

后续我们将进一步优化我们的模型,提高其在复杂场景下的积水识别能力。我们还计划收集和标注更多的训练数据,以提高我们模型的泛化能力。同时,我们还将探索其他的深度学习模型,以提高我们的积水识别效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/101103.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地电脑搭建web服务器、个人博客网站并发布公网访问 【无公网IP】(1)

文章目录 前言1. 安装套件软件2. 创建网页运行环境 指定网页输出的端口号3. 让WordPress在所需环境中安装并运行 生成网页4. “装修”个人网站5. 将位于本地电脑上的网页发布到公共互联网上 前言 在现代社会,网络已经成为我们生活离不开的必需品,而纷繁…

【MySQL】JDBC 编程详解

JDBC 编程详解 一. 概念二. JDBC 工作原理三. JDBC 使用1. 创建项目2. 引入依赖3. 编写代码(1). 创建数据源(2). 建立数据库连接(3). 创建 SQL(4). 执行 SQL(5). 遍历结果集(6). 释放连接 4. 完整的代码5. 如何不把 sql 写死 ?6. 获取连接失败的情况 四. JDBC常用接…

Cmake入门(一文读懂)

目录 1、Cmake简介2、安装CMake3、单目录简单实例3.1、CMakeLists.txt3.2、构建bulid内部构建外部构建 3.3、运行C语言程序 4、多目录文件简单实例4.1、根目录CMakeLists.txt4.2、源文件目录4.3、utils.h4.4、创建build 5、链接外部库文件6、注意 1、Cmake简介 CMake是一个强大…

基于Hata模型的BPSK调制信号小区覆盖模拟matlab完整程序分享

基于Hata信道模型的BPSK调制信号小区覆盖模拟matlab仿真,对比VoIP, Live Video,FTP/Email 完整程序: clc; clear; close all; warning off; addpath(genpath(pwd)); % Random bits are generated here. bits randi([0, 1], [50,1]); M 2; t 1:1:50; …

sqlserver 查询数据显示行号

查询的数据需要增加一个行号 SELECT ROW_NUMBER() OVER(ORDER BY witd_wages_area ,witd_wages_type ,witd_department_id ,witd_give_out_time) 行号,ISNULL(witd_wages_area, 0) witd_wages_area ,witd_wages_type ,witd_department_id ,ISNULL(CONVERT(VARCHAR(7), witd_gi…

Json“牵手”当当网商品详情数据方法,当当商品详情API接口,当当API申请指南

当当网是知名的综合性网上购物商城,由国内著名出版机构科文公司、美国老虎基金、美国IDG集团、卢森堡剑桥集团、亚洲创业投资基金(原名软银中国创业基金)共同投资成立1。 当当网从1999年11月正式开通,已从早期的网上卖书拓展到网…

函数式接口:Java 中的函数式编程利器

文章目录 1. 函数式接口概念2. 注解3. 自定义函数式接口4. 函数式编程4.1 Lambda的延迟执行效果4.2 使用Lambda作为参数和返回值作为参数使用作为返回值使用 5. 常用的函数接口5.1 Supplier:生产者5.2 Consumer:消费者5.3 Predicate:判断5.4 …

薅羊毛零撸小游戏是这样赚米的!

薅羊毛小游戏作为一种特殊类型的游戏,吸引了一大批用户的关注。本文将探讨薅羊毛小游戏的盈利模式、用户体验以及对游戏产业的影响,旨在为读者提供专业而有深度的思考和启示。 一、薅羊毛小游戏的盈利模式: 1.广告变现:薅羊毛小游…

PageHelper分页原理解析

大家好,我是Leo! 今天给大家带来的是关于PageHelper原理的解析,最近遇到一个SQL优化的问题,顺便研究了一下PageHelper的原理,毕竟也是比较常用,源码也比较好看的懂,如果感兴趣的小伙伴可以跟着过程去DEBUG源…

直播倒计时 1 天|SOFAChannel#35《SOFABoot 4.0 — 迈向 JDK 17 新时代》

🙌 SOFAChannel#35 直播倒计时 1 天! 直播预约 1. 视频号 SOFAGirl 直播 ⬇️点击一键预约⬇️ 2. 添加 SOFAGirl 微信 加入 SOFAChannel 技术交流群 3. 钉钉搜索:44858463 钉钉群同步直播,讲师在线答疑 4. 扫描👇下方…

一款内网信息收集利用工具

FuckDomainMini 简介 这是一款基于java开发Windows的内网信息收集、利用工具 可以节省您的信息收集所花费的,又或者是做免杀所花费的时间 现在这个版本是先行版本,目前先行版只有一个功能,更多的功能还在调试与开发中。 尽情期待&#x…

JVM学习(一)--程序计数器

作用:记住下一个jvm指令的执行地址 每一行java源代码,会被编译为多行jvm指令,上文所说的执行地址就是这里的0,3,4等 ,由于执行访问特别频繁,程序计数器的底层是有寄存器来实现的 特点: 线程私有&#xff…