DQN算法概述及基于Pytorch的DQN迷宫实战代码

一. DQN算法概述


1.1 算法定义

Q-Learing是在一个表格中存储动作对应的奖励值,即状态-价值函数Q(s,a),这种算法存在很大的局限性。在现实中很多情况下,强化学习任务所面临的状态空间是连续的,存在无穷多个状态,这种情况就不能再使用表格的方式存储价值函数。

于是,诞生了DQN算法,即深度Q网络(Deep Q-Network),是指基于深度学习的Q-Learing算法,用来解决连续状态空间和离散动作空间问题。此时的状态-价值函数变为Q(s,a;w)w是神经网络训练的参数矩阵。

DQN算法有两个非常大的优点,分别是经验回放和双Q表,下面详细讲解。

1.2 经验回放

不使用经验回放DQN算法的缺点:

  1. 使用完 ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1)就丢弃,造成经验浪费
  2. 我们按顺序使用四元组,前后两个transition四元组相关性很强,这种相关性对学习Q网络是有害的。

经验回放原理

经验回放会构建一个回放缓冲区(replay buffer),存储若干条transition,称为经验区,某一个策略与环境交互,收集很多条transition,放入回放缓冲区,回放缓冲区中的经验transition可能来自不同的策略。回放缓冲区只有在它装满的时候才会把旧的数据丢掉

使用经验回放优点:

  1. 能够重复使用经验,数据利用率高,对于数据获取困难的情况尤其有用。
  2. 把序列打散,消除相关性,使得数据满足独立同分布,从而减小参数更新的方差,提高收敛速度。

1.3 目标网络

不使用目标网络DQN算法的缺点

因为要计算目标网络的目标值target,会使用最大值,这样就会造成计算的结果比真实值要大,用高估的结果再去更新自己,在网络中一次次循环过程,该最大化会越来越大,导致高估。

目标网络原理

使用第二个网络,称为目标网络: Q ( s , a ; w − ) Q(s,a;{w^-}) Q(s,a;w),网络结构和原来的网络 Q ( s , a ; w ) Q(s,a;{w}) Q(s,a;w)一样,只是参数不同 w − ≠ w {w^-}≠w w=w,原来的网络称为评估网络

两个网络的作用不一样:

  • 评估网络 Q ( s , a ; w ) Q(s,a;{w}) Q(s,a;w)负责控制智能体,收集经验,梯度下降、反向传播

  • 目标网络 Q ( s ′ , a ′ ; w − ) Q(s^{\prime},a^{\prime};w^{-}) Q(s,a;w)用于计算下一状态Q

  • 在更新过程中,只更新评估网络 Q ( s , a ; w ) Q(s,a;{w}) Q(s,a;w)的权重 w w w,目标网络 Q ( s , a ; w − ) Q(s,a;{w^-}) Q(s,a;w)的权重保持 w − {w^-} w不变,在更新一定次数后,再将更新过的评估网络的权重复制给目标网络,进行下一批更新,这样目标网络也能得到更新

使用目标网络的优点

利用目标网络可以一定程度避免自举,减缓高估问题;由于在目标网络没有变化的一段时间内回报的目标值是相对固定的,因此目标网络的引入增加了学习的稳定性。

1.4 完整训练过程

在这里插入图片描述

  1. 初始化:初始化深度神经网络 Q Q Q 和目标网络 Q target Q_{\text{target}} Qtarget 的权重 θ \theta θ θ − \theta^- θ
  2. 数据收集: 在环境中与智能体进行交互,执行动作并观察状态转移、奖励和终止状态,将这些经验存储在经验回放缓冲区中。
  3. 经验回放: 从经验回放缓冲区中随机抽样一批经验,用于更新神经网络。这有助于减少样本之间的相关性,提高训练的稳定性。
  4. Q值估计: 使用神经网络 Q Q Q 估计当前状态下所有动作的 Q 值。
  5. 目标计算: 使用目标网络 Q target Q_{\text{target}} Qtarget 估计下一状态的最大 Q 值,即 max ⁡ a ′ Q target ( s ′ , a ′ ; θ − ) \max_{a'} Q_{\text{target}}(s', a'; \theta^-) maxaQtarget(s,a;θ)
  6. 更新目标: 使用当前奖励和计算的目标 Q 值更新目标值:

t a r g e t = r + γ ⋅ max ⁡ a ′ Q t a r g e t ( s ′ , a ′ ; θ − ) \mathrm{target}=r+\gamma\cdot\max_{a^{\prime}}Q_{\mathrm{target}}(s^{\prime},a^{\prime};\theta^{-}) target=r+γmaxaQtarget(s,a;θ)

  1. 计算损失: 使用均方误差损失计算 Q 值估计与目标之间的差异:

L ( θ ) = 1 2 ( target − Q ( s , a ; θ ) ) 2 \mathcal{L}(\theta)=\frac12\left(\text{target}-Q(s,a;\theta)\right)^2 L(θ)=21(targetQ(s,a;θ))2

  1. 更新网络: 使用梯度下降更新神经网络的权重 θ \theta θ,最小化损失 L ( θ ) \mathcal{L}(\theta) L(θ)

∇ θ L ( θ ) = − ( t a r g e t − Q ( s , a ; θ ) ) ⋅ ∇ θ Q ( s , a ; θ ) \nabla_\theta\mathcal{L}(\theta)=-\left(\mathrm{target}-Q(s,a;\theta)\right)\cdot\nabla_\theta Q(s,a;\theta) θL(θ)=(targetQ(s,a;θ))θQ(s,a;θ)

θ ← θ − α ⋅ ∇ θ L ( θ ) \theta\leftarrow\theta-\alpha\cdot\nabla_\theta\mathcal{L}(\theta) θθαθL(θ)

  1. 周期性更新目标网络: 每隔一定的时间步骤,将目标网络的权重 θ − \theta^- θ 更新为当前网络的权重 θ \theta θ

  2. 重复步骤2至9: 迭代地进行数据收集、经验回放、更新网络等步骤。

1.5 总结

深度Q网络将Q学习与深度学习结合,用深度网络来近似动作价值函数,而Q学习则是采用表格存储;深度Q网络采用经验回放的训练方式,从历史数据中随机采样,而Q学习直接采用下一个状态的数据进行学习。

二. 基于Pytorch的DQN迷宫实战


直接上GitHub代码吧,注释全部写在里面了,非常详细:

基于Pytorch的DQN迷宫算法


为了防止有小伙伴打不开,还是这里也放一份吧
RL.py:定义DQN网络

'''
@Author :YZX
@Date :2023/8/7 10:21
@Python-Version :3.8
'''import torch
# 用于构建神经网络的各种工具和类
import torch.nn as nn
import numpy as np
# 用于执行神经网络中的各种操作,如激活函数、池化、归一化等
import torch.nn.functional as F
import matplotlib.pyplot as plt# 深度网络,全连接层
class Net(nn.Module):# 输入状态和动作,当前例子中状态有2个表示为坐标(x,y),动作有4个表示为(上下左右)def __init__(self, n_states, n_actions):super(Net, self).__init__()# 创建一个线性层,2行10列self.fc1 = nn.Linear(n_states, 10)# 创建一个线性层,10行4列self.fc2 = nn.Linear(10, n_actions)# 随机初始化生成权重,范围是0-0.1self.fc1.weight.data.normal_(0, 0.1)self.fc2.weight.data.normal_(0, 0.1)# 前向传播(用于状态预测动作的值)def forward(self, state):# 这里以一个动作为作为观测值进行输入(输入张量)# 线性变化后输出给10个神经元,格式:(x,x,x,x,x,x,x,x,x,x,x)state = self.fc1(state)# 激活函数,将负值设置为零,保持正值不变state = F.relu(state)# 经过10个神经元运算过后的数据,线性变化后把每个动作的价值作为输出。out = self.fc2(state)return out# 定义DQN网络class
class DQN:#   n_states 状态空间个数;n_actions 动作空间大小def __init__(self, n_states, n_actions):print("<DQN init> n_states=", n_states, "n_actions=", n_actions)# 建立一个评估网络(即eval表示原来的网络) 和 Q现实网络 (即target表示用来计算Q值的网络)# DQN有两个net:target net和eval net,具有选动作、存储经验、学习三个基本功能self.eval_net, self.target_net = Net(n_states, n_actions), Net(n_states, n_actions)# 损失均方误差损失函数self.loss = nn.MSELoss()# 优化器,用于优化评估神经网络更新模型参数(仅优化eval),使损失函数尽量减小self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=0.01)self.n_actions = n_actions  #   状态空间个数self.n_states = n_states    #   动作空间大小# 使用变量# 用来记录学习到第几步了self.learn_step_counter = 0# 用来记录当前指到数据库的第几个数据了self.memory_counter = 0# 创建一个2000行6列的矩阵,即表示可存储2000行经验,每一行6个特征值# 2*2表示当前状态state(x,y)和下一个状态next_state(x,y) + 1表示选择一个动作 + 1表示一个奖励值self.memory = np.zeros((2000, 2 * 2 + 1 + 1))self.cost = []  # 记录损失值self.steps_of_each_episode = []  # 记录每轮走的步数# 进行选择动作# state = [-0.5 -0.5]def choose_action(self, state, epsilon):# 扩展一行,因为网络是多维矩阵,输入是至少两维# torch.FloatTensor(x)先将x转化为浮点数张量# torch.unsqueeze(input, dim)再将一维的张量转化为二维的,dim=0时数据为行方向扩,dim=1时为列方向扩# 例如 [1.0, 2.0, 3.0] -> [[1.0, 2.0, 3.0]]state = torch.unsqueeze(torch.FloatTensor(state), 0)# 在大部分情况,我们选择 去max-valueif np.random.uniform() < epsilon:   # greedy # 随机结果是否大于EPSILON(0.9)# 获取动作对应的价值action_value = self.eval_net.forward(state)#   torch.max() 返回输入张量所有元素的最大值,torch.max(input, dim),dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值#   torch.max(a, 1)[1] 代表a中每行最大值的索引#   data.numpy()[0] 将Variable转换成tensor# 哪个神经元值最大,则代表下一个动作action = torch.max(action_value, 1)[1].data.numpy()[0]# 在少部分情况,我们选择 随机选择 (变异)else:#   random.randint(参数1,参数2)函数用于生成参数1和参数2之间的任意整数,参数1 <= n < 参数2action = np.random.randint(0, self.n_actions)return action# 存储经验# 存储【本次状态,执行的动作,获得的奖励分,完成动作后产生的下一个状态】def store_transition(self, state, action, reward, next_state):# 把所有的记忆捆在一起,以 np 类型# 把 三个矩阵 s ,[a,r] ,s_  平铺在一行 [a,r] 是因为 他们都是 int 没有 [] 就无法平铺 ,并不代表把他们捆在一起了#  np.hstack()是把矩阵按水平方向堆叠数组构成一个新的数组transition = np.hstack((state, [action, reward], next_state))# index 是 这一次录入的数据在 MEMORY_CAPACITY 的哪一个位置# 如果记忆超过上线,我们重新索引。即覆盖老的记忆。index = self.memory_counter % 200self.memory[index, :] = transition  # 将transition添加为memory的一行self.memory_counter += 1# 从存储学习数据# target_net是达到次数后更新, eval_net是每次learn就进行更新def learn(self):# 更新 target_net,每循环100次更新一次if self.learn_step_counter % 100 == 0:# 将评估网络的参数状态复制到目标网络中# 即将target_net网络变成eval_net网络,实现模型参数的软更新self.target_net.load_state_dict((self.eval_net.state_dict()))self.learn_step_counter += 1# eval_net是 每次 learn 就进行更新# 从[0,200)中随机抽取16个数据并组成一维数组,该数组表示记忆索引值sample_index = np.random.choice(200, 16)# 表示从 self.memory 中选择索引为 sample_index 的行,: 表示选取所有列# 按照随机获得的索引值获取对应的记忆数据memory = self.memory[sample_index, :]# 从记忆当中获取[0,2)列,即第零列和第一列,表示状态特征state = torch.FloatTensor(memory[:, :2])# 从记忆中获取[2,3)列,即第二列,表示动作特征action = torch.LongTensor(memory[:, 2:3])# 从记忆中获取[3,4)列,即第三列,表示奖励特征reward = torch.LongTensor(memory[:, 3:4])# 从记忆中获取[4,5)列,即第四列和第五列,表示下一个状态特征next_state = torch.FloatTensor(memory[:, 4:6])# 从原来的网络中获得当前状态的动作对应的预测Q值# self.eval_net(state)表示输入当前state,通过forward()函数输出状态对应的Q值估计# .gather(1, action)表示从上述Q值估计的集合中,第一个维度上获取action对应的的Q值# 将Q值赋值给q_eval,表示所采取动作的预测valueq_eval = self.eval_net(state).gather(1, action)# 获得下一步状态的Q值# 把target网络中下一步的状态对应的价值赋值给q_next;此处有时会反向传播更新target,但此处不需更新,故加.detach()q_next = self.target_net(next_state).detach()# 计算对于的最大价值# q_target 实际价值的计算  ==  当前价值 + GAMMA(未来价值递减参数) * 未来的价值# max函数返回索引的最大值# unsqueeze(1)将上述计算出来的最大 Q 值的张量在第 1 个维度上扩展一个维度,变为一个列向量。q_target = reward + 0.9 * q_next.max(1)[0].unsqueeze(1)# 通过预测值与真实值计算损失 q_eval预测值, q_target真实值loss = self.loss(q_eval, q_target)# 记录损失值self.cost.append(loss.detach().numpy())# 根据误差,去优化我们eval网, 因为这是eval的优化器# 反向传递误差,进行参数更新self.optimizer.zero_grad()  # 梯度重置loss.backward()  # 反向求导self.optimizer.step()  # 更新模型参数# 绘制损失图def plot_cost(self):# np.arange(3)产生0-2数组plt.plot(np.arange(len(self.cost)), self.cost)plt.xlabel("step")plt.ylabel("cost")plt.show()# 绘制每轮需要走几步def plot_steps_of_each_episode(self):plt.plot(np.arange(len(self.steps_of_each_episode)), self.steps_of_each_episode)plt.xlabel("episode")plt.ylabel("done steps")plt.show()

MazeEnv.py:创建环境地图

'''
@Author :YZX
@Date :2023/8/7 16:03
@Python-Version :3.8
'''import tkinter as tk
import numpy as npUNIT = 40  # pixels 像素
MAZE_H = 4  # grid height y轴格子数
MAZE_W = 4  # grid width x格子数# 迷宫
class Maze(tk.Tk, object):def __init__(self):print("<env init>")super(Maze, self).__init__()# 动作空间(定义智能体可选的行为),action=0-3self.action_space = ['u', 'd', 'l', 'r']# 使用变量self.n_actions = len(self.action_space)# 状态空间,state=0,1self.n_states = 2# 配置信息self.title('maze')# 设置屏幕大小self.geometry("160x160")# 初始化操作self.__build_maze()# 渲染画面def render(self):# time.sleep(0.1)self.update()# 重置环境def reset(self):# 智能体回到初始位置# time.sleep(0.1)self.update()self.canvas.delete(self.rect)origin = np.array([20, 20])# 智能体位置,前两个左上角坐标(x0,y0),后两个右下角坐标(x1,y1)self.rect = self.canvas.create_rectangle(origin[0] - 15, origin[1] - 15,origin[0] + 15, origin[1] + 15,fill='red')# return observation 状态# canvas.coords(长方形/椭圆),会得到 【左极值点、上极值点、右极值点、下极值点】这四个点组成的元组,:2表示前2个return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2])) / (MAZE_H * UNIT)# 智能体向前移动一步:返回next_state,reward,terminaldef step(self, action):s = self.canvas.coords(self.rect)base_action = np.array([0, 0])if action == 0:  # upif s[1] > UNIT:base_action[1] -= UNITelif action == 1:  # downif s[1] < (MAZE_H - 1) * UNIT:base_action[1] += UNITelif action == 2:  # rightif s[0] < (MAZE_W - 1) * UNIT:base_action[0] += UNITelif action == 3:  # leftif s[0] > UNIT:base_action[0] -= UNITself.canvas.move(self.rect, base_action[0], base_action[1])  # move agentnext_coords = self.canvas.coords(self.rect)  # next state# reward functionif next_coords == self.canvas.coords(self.oval):reward = 1print("victory")done = Trueelif next_coords in [self.canvas.coords(self.hell1)]:reward = -1print("defeat")done = Trueelse:reward = 0done = Falses_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2])) / (MAZE_H * UNIT)return s_, reward, donedef __build_maze(self):self.canvas = tk.Canvas(self, bg='white',height=MAZE_H * UNIT,width=MAZE_W * UNIT)# create gridsfor c in range(0, MAZE_W * UNIT, UNIT):x0, y0, x1, y1 = c, 0, c, MAZE_H * UNITself.canvas.create_line(x0, y0, x1, y1)for r in range(0, MAZE_H * UNIT, UNIT):x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, rself.canvas.create_line(x0, y0, x1, y1)origin = np.array([20, 20])hell1_center = origin + np.array([UNIT * 2, UNIT])# 陷阱self.hell1 = self.canvas.create_rectangle(hell1_center[0] - 15, hell1_center[1] - 15,hell1_center[0] + 15, hell1_center[1] + 15,fill='black')oval_center = origin + UNIT * 2# 出口self.oval = self.canvas.create_oval(oval_center[0] - 15, oval_center[1] - 15,oval_center[0] + 15, oval_center[1] + 15,fill='yellow')# 智能体self.rect = self.canvas.create_rectangle(origin[0] - 15, origin[1] - 15,origin[0] + 15, origin[1] + 15,fill='red')self.canvas.pack()

Run.py:训练主方法

'''
@Author :YZX
@Date :2023/8/7 16:03
@Python-Version :3.8
'''from MazeEnv import Maze
from RL import DQN
import timedef run_maze():print("====Game Start====")step = 0    # 已进行多少步max_episode = 500   # 总共需要进行多少轮for episode in range(max_episode):# 环境和位置重置,但是memory一直保留state = env.reset()# 本轮已进行多少步step_every_episode = 0# 动态变化随机值epsilon = episode / max_episode# 开始实验循环# 只有env认为 这个实验死了,才会结束循环while True:if episode < 10:time.sleep(0.1)if episode > 480:time.sleep(0.2)# 刷新环境状态,显示新位置env.render()# 根据输入的环境特征 s  输出选择动作 aaction = model.choose_action(state, epsilon)  # 根据状态选择行为# 环境根据行为给出下一个状态,奖励,是否结束。next_state, reward, terminal = env.step(action) # env.step(a) 是执行 a 动作# 每完成一个动作,记忆存储数据一次model.store_transition(state, action, reward, next_state)  # 模型存储经历# 按批更新if step > 200 and step % 5 == 0:model.learn()# 状态转变state = next_state# 状态是否为终止if terminal:print("episode=", episode, end=",") # 第几轮print("step=", step_every_episode)  # 第几步model.steps_of_each_episode.append(step_every_episode) # 记录每轮走的步数breakstep += 1   # 总步数+1step_every_episode += 1 # 当前轮的步数+1# 游戏环境结束print("====Game Over====")env.destroy()if __name__ == "__main__":env = Maze()  # 环境# 实例化DQN类,也就是实例化这个强化学习网络model = DQN(n_states=env.n_states,n_actions=env.n_actions)run_maze()  # 训练env.mainloop()  # mainloop()方法允许程序循环执行,并进入等待和处理事件model.plot_cost()  # 画误差曲线model.plot_steps_of_each_episode()  # 画每轮走的步数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102110.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS笔记(黑马程序员pink老师前端)浮动,清除浮动

浮动可以改变标签的默认排列方式。浮动元素常与标准流的父元素搭配使用. 网页布局第一准则:多个块级元素纵向排列找标准流&#xff0c;多个块级元素横向排列找浮动。 float属性用于创建浮动框&#xff0c;将其移动到一边&#xff0c;直到左边缘或右边缘触及包含块或另一个浮动框…

Xilinx IDDR与ODDR原语的使用

文章目录 ODDR原语1. OPPOSITE_EDGE 模式2. SAME_EDGE 模式 ODDR原语 例化模板&#xff1a; ODDR #(.DDR_CLK_EDGE("OPPOSITE_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE" .INIT(1b0), // Initial value of Q: 1b0 or 1b1.SRTYPE("SYNC…

使用Python操作MySQL数据库

准备 安装Python,打开命令提示符&#xff0c;我已经安装成功了 安装Mysql我也安装成功了 我在用户的86188下利用记事本写了一个.py的python代码&#xff0c;在命令提示符中运行 Python自带的集成式开发环境,在电脑搜索框直接IDEA你也会打开 一&#xff0c;建立连接 使用Python…

colab使用(基础入门)——随手记

挂载到google drive 挂载目录/content/drive from google.colab import drive drive.mount(/content/drive) 图解colab读取Google Drive 文件 - 知乎 下载文件 !curl -L https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth -o imagebind_ckpt参数&#xff1a;[-…

Nginx 学习(十)高可用中间件的配置与实现

一 Keepalived热备 1 概述 调度器出现单点故障&#xff0c;如何解决?Keepalived实现了高可用集群Keepalived最初是为LVS设计的&#xff0c;专门监控各服务器节点的状态Keepalived后来加入了VRRP功能&#xff0c;防止单点故障 2 运行原理 Keepalived检测每个服务器节点状…

Pytest系列-快速入门和基础讲解(1)

前言 目前有两种纯测试的测试框架&#xff0c;pytest和unittestunittest应该是广为人知&#xff0c;而且也是老框架了&#xff0c;很多人都用来做自动化&#xff0c;无论是UI还是接口pytest是基于unittest开发的另一款更高级更好用的单元测试框架 单元测试框架介绍 单元测试…

【智慧工地源码】物联网和传感器技术在智慧工地的应用

物联网&#xff08;IoT&#xff09;和传感器技术在智慧工地中扮演着至关重要的角色。这些技术的应用&#xff0c;使得智慧工地能够实现对施工过程的精确监控、数据收集和分析&#xff0c;以及设备互联&#xff0c;从而提高工程效率、减少成本并改善工人的工作环境。 一、物联网…

微信小程序navigateTo进入页面后返回原来的页面需要携带数据回来

需求 如图&#xff1a;点击评论后会通过wx.navigateTo进入到评论页面&#xff0c;评论完返回count给原页面&#xff0c;重新赋值实现数量动态变化&#xff0c;不然要刷新这个页面才会更新最新的评论数量。 实现方式&#xff1a; 在评论页面通过wx.setStorageSync(‘data’…

在Android和iOS上设置手机ip详细教程

大家好&#xff01;今天我们将分享一个关于如何在Android和iOS设备上设置手机ip&#xff08;Layer 2 Tunneling Protocol&#xff09;的简易教程。如果你想要通过安全且可靠的方式连接到远程网络&#xff0c;那么跟着本文一起学习吧&#xff01;无需复杂操作&#xff0c;让我们…

jmeter调试错误大全

一、前言 在使用jmeter做接口测试的过程中大家是不是经常会遇到很多问题&#xff0c;但是无从下手&#xff0c;不知道从哪里开始找起&#xff0c;对于初学者而言这是一个非常头痛的事情。这里结合笔者的经验&#xff0c;总结出以下方法。 二、通过查看运行日志调试问题 写好…

web端调用本地摄像头麦克风+WebRTC腾讯云,实现直播功能

目录 关于直播直播流程直播视频格式封装推流和拉流 获取摄像头和麦克风权限navigator.getUserMedia()MediaDevices.getUserMedia() WebRTC腾讯云快直播 关于直播 视频直播技术大全、直播架构、技术原理和实现思路方案整理 直播流程 视频采集端&#xff1a; 1、视频采集&#…

基于ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升环境、生态、水文、土地、土壤、农业、大气等领域的数据分析能力与项目科研水平教程

详情点击链接&#xff1a;基于ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升环境、生态、水文、土地、土壤、农业、大气等领域的数据分析能力与项目科研水平教程 一&#xff0c;空间数据获取与制图 1.1 软件安装与应用 1.2 空间数据 1.3海量空间数据下载 1.4 ArcGIS软…