深入理解联邦学习——联邦学习的分类

分类目录:《深入理解联邦学习》总目录


在实际中,孤岛数据具有不同分布特点,根据这些特点,我们可以提出相对应的联邦学习方案。下面,我们将以孤岛数据的分布特点为依据对联邦学习进行分类。

考虑有多个数据拥有方,每个数据拥有方各自所持有的数据集 D i D_i Di可以用一个矩阵来表示。矩阵的每一行代表一个用户,每一列代表一种用户特征。同时,某些数据集可能还包含标签数据。如果要对用户行为建立预测模型,就必须要有标签数据。我们可以把用户特征叫做 X X X,把标签特征叫做 Y Y Y。比如,在金融领域,用户的信用是需要被预测的标签 Y Y Y;在营销领域,标签是用户的购买愿望 Y Y Y;在教育领域,则是学生掌握知识的程度等。用户特征 X X X加标签 Y Y Y构成了完整的训练数据 ( X , Y ) (X, Y) (X,Y)。但是,在现实中,往往会遇到这样的情况:各个数据集的用户不完全相同,或用户特征不完全相同。具体而言,以包含两个数据拥有方的联邦学习为例,数据分布可以分为以下三种情况:

  • 两个数据集的用户特征 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较大,而用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较大,而用户特征 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)与用户特征重叠 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)部分都比较小。

为了应对以上三种数据分布情况,我们把联邦学习分为横向联邦学习、纵向联邦学习与联邦迁移学习,如下图所示:
联邦学习的分类

横向联邦学习

在两个数据集的用户特征重叠较多而用户重叠较少的情况下,我们把数据集按照横向(即用户维度)切分,并取出双方用户特征相同而用户不完全相同的那部分数据进行训练。这种方法叫做横向联邦学习。比如有两家不同地区银行,它们的用户群体分别来自各自所在的地区,相互的交集很小。但是,它们的业务很相似,因此,记录的用户特征是相同的。此时,就可以使用横向联邦学习来构建联合模型。GoogIe在2017年提出了一个针对安卓手机模型更新的数据联合建模方案:在单个用户使用安卓手机时,不断在本地更新模型参数并将参数上传到安卓云上,从而使特征维度相同的各数据拥有方建立联合模型的一种联邦学习方案。

横向联邦学习步骤如下:

  1. 参与方各自从服务器下载最新模型
  2. 每个参与方利用本地数据训练模型,加密梯度上传给服务器,服务器聚合各参与方的梯度更新模型参数
  3. 服务器返回更新后的模型给各参与方
  4. 各参与方更新各自模型
  5. 重复步骤1~4至模型收敛或达到预期

在传统的机器学习建模中,通常是把模型训练需要的数据集合到一个数据中心然后训练模型再进行预测。在横向联邦学习中,可以看作是基于样本的分布式模型训练,分发全部数据到不同的机器,每台机器从服务器下载模型,然后利用本地数据训练模型,之后返回给服务器需要更新的参数。服务器聚合各机器上的返回的参数,更新模型,再把最新的模型反馈到每台机器。在这个过程中,每台机器下都是相同且完整的模型,且机器之间不交流不依赖,在预测时每台机器也可以独立预测,可以把这个过程看作成基于样本的分布式模型训练。谷歌最初就是采用横向联邦的方式解决安卓手机终端用户在本地更新模型的问题的。

纵向联邦学习

在两个数据集的用户重叠较多而用户特征重叠较少的情况下,我们把数据集按照纵向(即特征维度)切分,并取出双方用户相同而用户特征不完全相同的那部分数据进行训练。这种方法叫做纵向联邦学习。比如有两个不同机构,一家是某地的银行,另一家是同一个地方的电商。它们的用户群体很有可能包含该地的大部分居民,因此用户的交集较大。但是,由于银行记录的都是用户的收支行为与信用评级,而电商则保有用户的浏览与购买历史,因此它们的用户特征交集较小。纵向联邦学习就是将这些不同特征在加密的状态下加以聚合,以增强模型能力的联邦学习。目前,逻辑回归模型,树型结构模型和神经网络模型等众多机器学习模型已经逐渐被证实能够建立在这个联邦体系上。

联邦迁移学习

在两个数据集的用户与用户特征重叠都较少的情况下,我们不对数据进行切分,而可以利用迁移学习来克服数据或标签不足的情况,这种方法叫作联邦迁移学习。比如有两个不同机构,一家是位于中国的银行,另一家是位于美国的电商。由于受到地域限制,这两家机构的用户群体交集很小。同时,由于枳构类型的不同,二者的数据特征也只有小部分重合。在这种情况下,要想进行有效的联邦学习,就必须引入迁移学习,来解决单边数据规模小和标签样本少的问题,从而提升模型的效果。

参考文献:
[1] 杨强, 刘洋, 程勇, 康焱, 陈天健, 于涵. 联邦学习[M]. 电子工业出版社, 2020
[2] 微众银行, FedAI. 联邦学习白皮书V2.0. 腾讯研究院等, 2021

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102481.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一道面试题:介绍一下 Fragment 间的通信方式?

Fragment 间的通信可以借助以下几种方式实现: EventBusActivity(or Parent Fragment)ViewModelResult API 1. 基于 EventBus 通信 EventBus 的优缺点都很突出。 优点是限制少可随意使用,缺点是限制太少使用太随意。 因为 Even…

软路由ip的优势与劣势:了解其适用场景和限制

在网络技术的快速发展中,软路由IP作为一种灵活且功能强大的网络设备,越来越受到人们的关注。然而,正如任何技术一样,软路由IP也有其优势和劣势。本文将深入探讨软路由IP的优势、劣势以及其适用场景和限制,帮助你更好地…

深入讲解内存分配函数 malloc 原理及实现

任何一个用过或学过C的人对 malloc 都不会陌生。大家都知道malloc可以分配一段连续的内存空间,并且在不再使用时可以通过free释放掉。但是,许多程序员对malloc背后的事情并不熟悉,许多人甚至把malloc当做操作系统所提供的系统调用或C的关键字…

Streamlit 讲解专栏(十二):数据可视化-图表绘制详解(下)

文章目录 1 前言2 使用st.vega_lite_chart绘制Vega-Lite图表2.1 示例1:绘制散点图2.2 示例2:自定义主题样式 3 使用st.plotly_chart函数创建Plotly图表3.1 st.plotly_chart函数的基本用法3.2 st.plotly_chart 函数的更多用法 4 Streamlit 与 Bokeh 结合进…

运维Shell脚本小试牛刀(七):在函数文脚本件中调用另外一个脚本文件中函数|函数递归调用|函数后台执行

运维Shell脚本小试牛刀(一) 运维Shell脚本小试牛刀(二) 运维Shell脚本小试牛刀(三)::$(cd $(dirname $0); pwd)命令详解 运维Shell脚本小试牛刀(四): 多层嵌套if...elif...elif....else fi_蜗牛杨哥的博客-CSDN博客 Cenos7安装小火车程序动画 运维Shell脚本小试…

React笔记(八)Redux

一、安装和配置 React 官方并没有提供对应的状态机插件,因此,我们需要下载第三方的状态机插件 —— Redux。 1、下载Redux 在终端中定位到项目根目录,然后执行以下命令下载 Redux npm i redux 2、创建配置文件 在 React 中,…

mysql创建用户

创建用户 创建 -- 创建用户 itcast , localhost只能够在当前主机localhost访问, 密码123456; create user test01localhost identified by 123456;使用命令show databases;命令,只显示一个数据库,因为没有权限 -- 创建用户 test02, 可以在任意主机访问…

Java基础(四)

151. LinkedList特征分析 增删快 可以打断连接,重新赋值引用,不 涉及数据移动操作,效率高 查询慢 双向链表结构数据存储非连 续,需要通过元素一一 跳转 152 ArrayList和LinkedList对比分析 ArrayList特征 查询快。增删慢 适用于数据产出之…

cookies 设置过期时间

1.如何在浏览器中查看cookie过期时间 F12-Application-Cookies可以查看到网页所有设置cookie值, 如果设置了过期时间的cookie是可以看到过期时间的持久cookie(persistent cookie), 没有设置过期时间的是会话cookie(s…

基于云计算的区域LIS系统系统源码

在医疗机构内部,院内实验室主要负责本院临床科室的检验,院内LIS系统必须满足实验室日常的标本处理入库、仪器联机、检验结果处理、报告打印、报告发布、检验信息统计、检验信息报告发布、标本流程、外部医疗机构检验报告调阅等工作。 在医疗机构间&#…

ARM编程模型-常用指令集

一、ARM指令集 ARM是RISC架构,所有的指令长度都是32位,并且大多数指令都在一个单周期内执行。主要特点:指令是条件执行的,内存访问使用Load/store架构。 二、Thumb 指令集 Thumb是一个16位的指令集,是ARM指令集的功能…

WEB APIs day6

一、正则表达式 RegExp是正则表达式的意思 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" co…