MySQL 如何避免 RC 隔离级别下的 INSERT 死锁?

本文分析了 INSERT 及其变种(REPLACE/INSERT ON DUPLICATE KEY UPDATE)的几个场景的死锁及如何避免。

作者:张洛丹,DBA 数据库技术爱好者~

爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。

本文共 3200 字,预计阅读需要 10 分钟。

说在前面

本文分析了 INSERT 及其变种(REPLACE/INSERT ON DUPLICATE KEY UPDATE)的几个场景的死锁及如何避免:

  • 场景一:INSERT 唯一键冲突
  • 场景二/三:REPLACE INTO 唯一键冲突(来自线上业务)
  • 场景四:INSERT 主键冲突(来自官方案例)

其实 Google 一番,也会有大量这样的文章。本文只是就几个场景进行了分析,不过一遍走下来,对 INSERT 加锁情况、如何导致的死锁也就掌握了,个人能力有限,如文中内容有错误和纰漏,也欢迎大佬指出。

有兴趣的就继续往下看吧~

回顾行锁

在此之前,先浅浅回顾一下 InnoDB 中的行锁类型。

记录锁(RECORD LOCK)

对索引记录加锁。

间隙锁(GAP LOCK,也叫范围锁)

对索引记录的所在间隙加锁,在 RR 隔离级别下,用于解决幻读的问题(实际上在 RC 隔离级别下,也会产生间隙锁)。

S 间隙锁和 X 间隙锁是兼容的,不同的事务可以在同一个间隙加锁。

NEXT-KEY 锁

相当于 RECORD LOCK + GAP LOCK。

插入意向锁(INSERT INTENTION LOCK)

GAP 锁的一种,在执行 INSERT 前,如果待插入记录的下一条记录上被加了 GAP 锁,则 INSERT 语句被阻塞,且生成一个插入意向锁。

仅会被 GAP 锁阻塞。

隐式锁

新插入的记录,不生成锁结构,但由于事务 ID 的存在,相当于加了隐式锁;别的事务要对这条记录加锁前,先帮助其生成一个锁结构,然后再进入等待状态。


这里产生死锁的关键就是 GAP 锁。GAP 锁是在 RR 隔离级别下用于解决幻读问题,但是 RC 隔离级别下,在重复键检查和外键检查时也会用到。

再浅浅回顾一下 INSERT 语句加锁类型:

  1. 被 GAP 锁阻塞时,生成一个插入意向锁。
  2. 遇到重复键冲突时
    • 主键冲突,产生 S 型记录锁(RR 和 RR 隔离级别,实际上在 INSERT 阶段时还是会请求 GAP 锁)。
    • 唯一键冲突,产生 S 型 NEXT-KEY 锁(RR 和 RR 隔离级别)。

注意:INSERT 语句正常执行时,不会生成锁结构。

另外,对于 INSERT ... ON DUPLICATE KEY UPDATEREPLACE 稍有一些不同:

锁类型的不同

INSERT ... ON DUPLICATE KEY UPDATEREPLACE 如果遇到重复键冲突。

  • 如果是主键冲突,加 X 型记录锁(RR 和 RR 隔离级别,实际上在 INSERT 阶段时还是会请求 GAP 锁)。
  • 如果是唯一键冲突,加 X 型 NEXT-KEY 锁(RR 和 RR 隔离级别)。

锁范围不同

  • INSERTINSERT ... ON DUPLICATE KEY UPDATE 在插入或 UPDATE 的行上加 NEXT-KEY 锁。
  • REPLACE 在加 NEXT-KEY 锁时,会在 REPLACE 的记录及其下一条记录上加 NEXT-KEY 锁。

    这里和官方文档描述有些不同。如下,官方仅说了会在被 REPLACE 的行上加 NEXT-KEY 锁,但是测试下来其下一行也会加 NEXT-KEY 锁,具体见后文的场景。

最后浅浅回顾一下死锁的产生条件以及观测手段:

死锁的产生条件

两个或两个以上事务,互相等待对方持有的锁,且持有对方需要的锁,从而造成循环等待。

死锁观测手段

performance_schema.data_locks 查看会话产生的锁结构信息。

SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;

show engine innodb status 查看死锁信息。

正式开始

正式开始前还是要说一下基本的环境信息:

  • MySQL 8.0.32
  • transaction_isolation:READ-COMMITTED

准备数据

每个案例初始数据都是这些。

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (id INT NOT NULL AUTO_INCREMENT,a INT NULL,b INT NULL,PRIMARY KEY (id),UNIQUE INDEX uk_a (a ASC)
);
INSERT INTO t1 (id, a, b) VALUES (1, 10, 0);
INSERT INTO t1 (id, a, b) VALUES (2, 20, 0);
INSERT INTO t1 (id, a, b) VALUES (3, 30, 0);
INSERT INTO t1 (id, a, b) VALUES (4, 40, 0);
INSERT INTO t1 (id, a, b) VALUES (5, 50, 0);

场景一

时刻session1session2
T1BEGIN;
INSERT INTO t1(a,b) VALUES (35,0);
T2BEGIN;
INSERT INTO t1(a,b) VALUES (35,0); --被阻塞
T3INSERT INTO t1(a,b) VALUES (33,0)
T4DEADLOCK

不同时刻持有锁状态如下:

说明:示意图中仅画出我们分析的唯一索引上的锁,实际上在对唯一索引加上锁后,还会对对应的聚簇索引加记录锁,对主键索引但这里不去体现了,下文同。

过程解说

T1 时刻

session1 插入记录成功,此时对应的索引记录被隐式锁保护,未生成锁结构。

T2 时刻

session2 插入记录检测到插入值和 session1 唯一键冲突。

  • session2 帮助 session1 对 a=35 的记录产生了一个显式的锁结构。
  • session2 自身产生 S 型的 NEXT-KEY LOCK,请求范围为 (30,35],但是其只能获取到 (30,35) 的 GAP LOCK,而被 session1 的 a=35 的记录锁阻塞。
mysql> SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE     | LOCK_STATUS | LOCK_DATA |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
|               xxxxxx2 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx2 | t1          | uk_a       | RECORD    | S             | WAITING     | 35, 7     |
|               xxxxxx1 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X,REC_NOT_GAP | GRANTED     | 35, 7     |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
4 rows in set (0.01 sec)
T3 时刻
  • session1 插入 a=33,被 session2 (30,35)间隙锁阻塞。

至此,形成闭环锁等待,死锁条件达成:

  • session1 持有 session2 需要的 a=35 记录锁,且请求 session2 持有的 (30,35) GAP 锁。
  • session2 持有 session1 需要的 (30,35) GAP 锁,且请求 session1 持有的记录锁。

下面是打印的死锁日志。

针对该场景的死锁该如何避免:

  • 在一个事务中的 INSERT 按照主键或唯一键的顺序增序插入,即 session1 可以先插入 a=33 的记录,再插入 a=35 的记录,可一定程度避免受到 GAP 锁的影响。
  • 一个事务中只插入一行记录,且尽快提交。

场景二

时刻session1session2session3
T1BEGIN; REPLACE INTO t1 (a, b) VALUES (40, 1);
T2BEGIN; REPLACE INTO t1 (a, b) VALUES (30, 1); -- 被阻塞
T3BEGIN; REPLACE INTO t1 (a, b) VALUES (40, 1);  -- 被阻塞
T4COMMIT;
T52 rows affected;DEADLOCK,ROLLBACK;

不同时刻持有锁状态如下:

过程解说

T1 时刻

session1 检测到唯一键冲突,对 REPLACE 的记录和其下一条记录加 X 型 NEXT-KEY 锁,即锁范围为 (30,40],(40,50]。

注意:这里和 INSERT 区分,INSERT 遇到唯一键冲突被阻塞时,在插入的记录上加的 NEXT-KEY 锁,这里 REPLACE 是在插入记录和下一条记录上加的 NEXT-KEY 锁(官方文档描述似乎有欠妥当)。

锁情况

mysql> SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE     | LOCK_STATUS | LOCK_DATA |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
|               xxxxxx1| t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx1| t1          | uk_a       | RECORD    | X             | GRANTED     | 40, 4     |
|               xxxxxx1| t1          | uk_a       | RECORD    | X             | GRANTED     | 50, 5     |
|               xxxxxx1| t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 4         |
|               xxxxxx1| t1          | uk_a       | RECORD    | X,GAP         | GRANTED     | 40, 10    |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
5 rows in set (0.00 sec)
T2 时刻

session2 遇到唯一键冲突,对 REPLACE 的记录和其下一条记录加 X 型 NEXT-KEY 锁,即锁范围是 (20,30],(30,40],对 (20,30],(30,40) 加锁成功,但是等待 session1 a=40 的记录锁。

mysql> SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE     | LOCK_STATUS | LOCK_DATA |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
|               xxxxxx2 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx2 | t1          | uk_a       | RECORD    | X             | GRANTED     | 30, 3     |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 3         |
|               xxxxxx2 | t1          | uk_a       | RECORD    | X             | WAITING     | 40, 4     |
|               xxxxxx1 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X             | GRANTED     | 40, 4     |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X             | GRANTED     | 50, 5     |
|               xxxxxx1 | t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 4         |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X,GAP         | GRANTED     | 40, 10    |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
9 rows in set (0.00 sec)
T3 时刻

session3 请求的锁类型和 session1 相同,锁范围为(30,40],(40,50],在获取(30,40] NEXT-KEY 锁时,只获取到了(30,40) GAP 锁,等待 session1 a=40 的记录锁。

注意:这里还未对(40,50] 加上锁,InnoDB 行锁是逐行获取的,无法获取到则被阻塞。

锁情况

mysql> SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE     | LOCK_STATUS | LOCK_DATA |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
|               xxxxxx3 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx3 | t1          | uk_a       | RECORD    | X             | WAITING     | 40, 4     |
|               xxxxxx2 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx2 | t1          | uk_a       | RECORD    | X             | GRANTED     | 30, 3     |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 3         |
|               xxxxxx2 | t1          | uk_a       | RECORD    | X             | WAITING     | 40, 4     |
|               xxxxxx1 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X             | GRANTED     | 40, 4     |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X             | GRANTED     | 50, 5     |
|               xxxxxx1 | t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 4         |
|               xxxxxx1 | t1          | uk_a       | RECORD    | X,GAP         | GRANTED     | 40, 10    |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
11 rows in set (0.01 sec)
T4 时刻
  • session1 提交后,持有的锁释放。
  • session2 获取到 a=40 的记录锁,至此,session2 持有的锁为 (20,30],(30,40] NEXT-KEY 锁 ;session2获取到锁后,执行插入操作,由于插入的间隙是 (20,40),被 session3 的 (30,40) GAP 锁阻塞,产生插入意向锁,并进入等待状态。

至此,形成闭环锁等待,死锁条件达成:

  • session2 持有 (20,30],(30,40] NEXT-KEY 锁,请求插入意向锁,被 session3 的 (30,40) GAP 锁阻塞。
  • session3 持有阻塞 session2 的 (30,40) GAP 锁,请求 sesion2 持有的 a=40 记录锁。

下面是打印的死锁日志。

场景三

时刻session1session2session3
T1BEGIN; SELECT * FROM t1 WHERE a=40 for UPDATE;
T2BEGIN; REPLACE INTO t1 (a, b) VALUES (30, 1);-- 被阻塞
T3BEGIN; REPLACE INTO t1 (a, b) VALUES (40, 1); -- 被阻塞
T4COMMIT;
T52 rows affected;DEADLOCK,ROLLBACK;

不同时刻持有锁状态如下:

该场景和场景二死锁情况基本相同,只是 session1 持有锁类型不同,就不一一解说了。

下面是打印的死锁日志。

针对场景二和场景三的死锁该如何避免?

从前面的分析中,可以看到在唯一键冲突时,INSERTINSERT ... ON DUPLICATE KEY UPDATE 的加锁范围要比 REPLACE 加锁范围小,在该场景下,可使用 INSERT ... ON DUPLICATE KEY UPDATE 代替 REPLACE 来避免死锁,有兴趣的可以自己测试下。

场景四

说明

  • 本案例测试主键冲突的情况,先删除了表上的唯一键,避免干扰。
  • 对于唯一键冲突的该种场景下同样会产生死锁,死锁情况相同,有兴趣可自行验证。
时刻session1session2session3
T1BEGIN;INSERT INTO t1 (id,a, b) VALUES (6,60, 0);
T2BEGIN;INSERT INTO t1 (id,a, b) VALUES(6,70, 0); --被阻塞
T3BEGIN;INSERT INTO t1 (id,a, b) VALUES(6,80, 0);-- 被阻塞
T4ROLLBACK;
T51 rows affected;DEADLOCK,ROLLBACK;

锁情况

在 T1、T2、T3 阶段锁情况如下,此时并没有 GAP 锁,是记录锁,相应的锁状态如下:

mysql>  SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE     | LOCK_STATUS | LOCK_DATA |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
|               xxxxxx3 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx3 | t1          | PRIMARY    | RECORD    | S,REC_NOT_GAP | WAITING     | 6         |
|               xxxxxx2 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | S,REC_NOT_GAP | WAITING     | 6         |
|               xxxxxx1 | t1          | NULL       | TABLE     | IX            | GRANTED     | NULL      |
|               xxxxxx1 | t1          | PRIMARY    | RECORD    | X,REC_NOT_GAP | GRANTED     | 6         |
+-----------------------+-------------+------------+-----------+---------------+-------------+-----------+
6 rows in set (0.00 sec)
T4 时刻

session1 ROLLBACK,session2 和 session3 都获取到了 S 锁,在 INSERT 阶段,却产生了 NEXT-KEY 锁,锁范围为 (5,supremum]。

至此,形成闭环锁等待,死锁条件达成: session2 和 session3 分别想要在插入的间隙 (5,supremum) 获得插入意向锁,但分别被对方持有的 GAP 锁阻塞。

下面是打印的死锁日志。

触发死锁后,我们再看锁持有情况。

此时 session2 持有 (5,supremum),再插入该范围内的记录都会被阻塞了。

mysql>  SELECT ENGINE_TRANSACTION_ID, OBJECT_NAME, INDEX_NAME, LOCK_TYPE, LOCK_MODE, LOCK_STATUS, LOCK_DATA FROM performance_schema.data_locks;
+-----------------------+-------------+------------+-----------+--------------------+-------------+------------------------+
| ENGINE_TRANSACTION_ID | OBJECT_NAME | INDEX_NAME | LOCK_TYPE | LOCK_MODE          | LOCK_STATUS | LOCK_DATA              |
+-----------------------+-------------+------------+-----------+--------------------+-------------+------------------------+
|               xxxxxx2 | t1          | NULL       | TABLE     | IX                 | GRANTED     | NULL                   |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | S                  | GRANTED     | supremum pseudo-record |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | X,INSERT_INTENTION | GRANTED     | supremum pseudo-record |
|               xxxxxx2 | t1          | PRIMARY    | RECORD    | S,GAP              | GRANTED     | 6                      |
+-----------------------+-------------+------------+-----------+--------------------+-------------+------------------------+
4 rows in set (0.00 sec)

小结

从前面的实验中可以看到无论是 INSERT 还是 REPLACE,在高并发的情况下由于唯一键的存在,即使在 RC 隔离级别下,仍然有较大概率会触发到死锁。当前只能在业务端做好容错处理,以下是一些小建议来减少或避免 INSERT 死锁:

  1. RC 隔离级别相较 RR 隔离级别产生死锁的概率小,但仍不可避免。
  2. INSERT ... ON DUPLICATE KEY UPDATEREPLACE 产生死锁的几率小且更安全高效。
  3. 并发事务按照相同的顺序处理数据。
  4. 事务尽快提交,避免大事务、长事务。

另外,通过前面的实验,大家可能会有以下疑问:

  1. 为什么 RC 隔离级别要使用 GAP 锁?
  2. 为什么主键和唯一键的处理方式不同?
  3. ...???

有兴趣的可以到下面文章寻找答案: http://mysql.taobao.org/monthly/2022/05/02/ 更多技术文章,请访问:https://opensource.actionsky.com/

关于 SQLE

爱可生开源社区的 SQLE 是一款面向数据库使用者和管理者,支持多场景审核,支持标准化上线流程,原生支持 MySQL 审核且数据库类型可扩展的 SQL 审核工具。

SQLE 获取

类型地址
版本库https://github.com/actiontech/sqle
文档https://actiontech.github.io/sqle-docs/
发布信息https://github.com/actiontech/sqle/releases
数据审核插件开发文档https://actiontech.github.io/sqle-docs/docs/dev-manual/plugins/howtouse

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102723.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win11和虚拟机上的ubuntu系统共享文件夹

出发点:有时候需要在虚拟机内和win11系统之间进行文件拷贝操作,但是虚拟机内的Vmware Tools不好用 解决方式 开启虚拟机共享文件夹 在虚拟机的Ubuntu系统内的终端命令行输入以下命令 sudo /usr/bin/vmhgfs-fuse .host:/SVMware /mnt/win -o subtype…

电子产品CE认证申请,CE-RED认证

CE认证,即只限于产品不危及人类、动物和货品的安全方面的基本安全要求,而不是一般质量要求,协调指令只规定主要要求,一般指令要求是标准的任务。 构成欧洲指令核心的"主要要求",在欧共体1985年5月7日的&…

【webpack】HMR热更新原理

本文:参考文章 一、HMR是什么,为什么出现 1、出现的原因 之前,应用的加载、更新都是一个页面级别的操作,即使单个代码文件更新,整个页面都要刷新,才能拿到最新的代码同步到浏览器,导致会丢失…

【猿灰灰赠书活动 - 05期】- 【速学Linux:系统应用从入门到精通】

👨‍💻本文专栏:赠书活动专栏(为大家争取的福利,免费送书) 👨‍💻本文简述:博文为大家争取福利,与机械工业出版社合作进行送书活动 👨‍&#x1f…

数学建模:相关性分析

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:相关性分析 文章目录 数学建模:相关性分析相关性分析两变量的相关分析PearsonSpearmanKendall tua-b 双变量关系强度测量的指标相关系数的性质代码实现example偏相关分析 相…

云存储:实现数据备份与恢复的创新方法

文章目录 云存储的基本概念数据备份的创新方法自动化备份策略增量备份和版本控制多地点备份 数据恢复的创新方法快速数据恢复弹性扩展性数据验证和一致性 案例分析:AWS S3自动化备份策略增量备份和版本控制多地点备份快速数据恢复数据验证和一致性 结论 &#x1f38…

外滩大会今日开幕 生成式AI成为热议话题

2023 Inclusion外滩大会9月7日在上海黄浦世博园正式开幕。这场以“科技创造可持续未来”为主题的大会为期三天,近20位“两院”院士、诺贝尔奖和图灵奖得主,全球超500位有影响力的科技领军企业和专家学者,将在此带来一场科技、人文和产业的思想…

php代理刷访问量(附源码)

众所周知,所谓的访问量就是用户的点击次数。当然,如果真只是单纯记录用户的访问次数,那访问量刷起来也太简单了,不断的刷新网页就行。因此,常规的网站记录访问量是通过ip来的,一个有效ip对应一个访问量。通…

快讯 | ALVA 荣获首届“格物杯”联通物联网应用创新大赛复赛一等奖!

8 月 7 日,“物聚龙江 智联百业”物联网创新发展合作交流暨首届“格物杯”联通物联网应用创新大赛企业赛道复赛 (赛区四)在哈尔滨举办。 ALVA Systems 凭借智能远程协助平台—— ALVA Rainbow 在近 50 家企业中脱颖而出,荣获首届“格物杯”联通物联网应…

合宙Air724UG LuatOS-Air LVGL API控件-图片 (Image)

图片 (Image) 图片IMG是用于显示图像的基本对象类型,图像来源可以是文件,或者定义的符号。 示例代码 -- 创建图片控件 img lvgl.img_create(lvgl.scr_act(), nil) -- 设置图片显示的图像 lvgl.img_set_src(img, "/lua/luatos.png") -- 图片…

Web自动化测试进阶 —— Selenium模拟鼠标操作

鼠标操作事件 在实际的web产品测试中,对于鼠标的操作,不单单只有click(),有时候还要用到右击、双击、拖动等操作,这些操作包含在ActionChains类中。 ActionChains类中鼠标操作常用方法: 首先导入ActionChains类&…

023-从零搭建微服务-推送服务(三)

原【短信服务】更名【推送服务】 写在最前 如果这个项目让你有所收获,记得 Star 关注哦,这对我是非常不错的鼓励与支持。 源码地址(后端):https://gitee.com/csps/mingyue 源码地址(前端)&a…