LlamaIndex:将个人数据添加到LLM

推荐:使用 NSDT场景编辑器 快速搭建3D应用场景

LlamaIndex是基于大型语言模型(LLM)的应用程序的数据框架。像 GPT-4 这样的 LLM 是在大量公共数据集上预先训练的,允许开箱即用的令人难以置信的自然语言处理能力。但是,如果无法访问您自己的私人数据,它们的效用会受到限制。

LlamaIndex 允许您通过灵活的数据连接器从 API、数据库、PDF 等中提取数据。然后,LlamaIndex 允许通过查询引擎、聊天界面和 LLM 支持的数据代理对数据进行自然语言查询和对话。它使您的LLM能够大规模访问和解释私有数据,而无需在较新的数据上重新训练模型。

无论您是寻找一种以自然语言查询数据的简单方法的初学者,还是需要深度自定义的高级用户,LlamaIndex 都能提供这些工具。高级 API 允许仅使用五行代码即可入门,而较低级别的 API 允许完全控制数据摄取、索引、检索等。

LlamaIndex指数如何运作?

LlamaIndex使用检索增强生成(RAG)系统,该系统将大型语言模型与私有知识库相结合。它通常由两个阶段组成:索引阶段和查询阶段。

来自高级概念的图像

索引阶段

LlamaIndex将在索引阶段有效地将私有数据索引为矢量索引。此步骤有助于创建特定于您的域的可搜索知识库。您可以输入文本文档、数据库记录、知识图谱和其他数据类型。

从本质上讲,索引将数据转换为捕获其语义含义的数字向量或嵌入。它可以跨内容进行快速相似性搜索。

查询阶段

在查询阶段,RAG 管道会根据用户的查询搜索最相关的信息。然后将此信息与查询一起提供给LLM,以创建准确的响应。

此过程允许LLM访问其初始培训中可能未包含的当前和更新信息。

此阶段的主要挑战是对潜在的多个知识库进行检索、组织和推理。

设置LlamaIndex索引

在我们深入研究 LlamaIndex 教程和项目之前,我们必须安装 Python 包并设置 API。

我们可以简单地使用 pip 安装 LlamaIndex。

默认情况下,LlamaIndex使用OpenAI GPT-3 text-davinci-003模型。若要使用此模型,必须具有设置。您可以通过登录OpenAI的新API令牌创建一个免费帐户并获取API密钥。OPENAI_API_KEY

此外,请确保您已安装该软件包。openai

使用LlamaIndex将个人数据添加到LLM

在本节中,我们将学习使用LlamaIndex来创建简历阅读器。您可以通过转到LinkedIn个人资料页面,单击“更多”,然后单击“保存到PDF”来下载简历。

请注意,我们使用 DataCamp 工作区来运行 Python 代码。可以在“LlamaIndex:将个人数据添加到LLM”工作区中访问所有相关代码和输出。

在运行任何内容之前,我们必须安装 、 和 。我们正在安装,以便我们可以读取和转换PDF文件。llama-indexopenaipypdfpypdf

我们有一个名为“Private-Data”的目录,只包含一个PDF文件。我们将使用 来读取它,然后使用 .SimpleDirectoryReaderTreeIndex

为数据编制索引后,可以使用 开始提问。此功能使您能够询问有关文档中特定信息的问题,并在 OpenAI 模型的帮助下收到相应的响应。as_query_engine()GPT-3 text-davinci-003

注意:您可以在DataCamp Workspace中设置OpenAI API,方法是按照使用GPT-3.5和GPT-4通过Python中的OpenAI API教程进行操作。

正如我们所看到的,LLM模型已经准确地响应了查询。它搜索了索引并找到了相关信息。

我们可以进一步询问认证。LlamaIndex似乎已经对候选人有了完整的了解,这对于寻求特定个人的公司来说是有利的。

response = query_engine.query("What is the name of certification that Abid received?")print(response)

创建索引是一个耗时的过程。我们可以通过保存上下文来避免重新创建索引。默认情况下,以下命令会将索引存储保存在目录中。./storage

new_index.storage_context.persist() OpenAI

创建索引

完成后,我们可以快速加载存储上下文并创建索引。

为了验证它是否正常运行,我们将向查询引擎询问简历中的问题。看来我们已经成功加载了上下文。

聊天机器人

除了问答,我们还可以使用LlamaIndex创建一个个人聊天机器人。我们只需要用函数初始化索引。as_chat_engine()

我们将问一个简单的问题。

在不提供额外背景的情况下,我们将提出后续问题。

In 2021, Abid worked as a Data Science Consultant for Guidepoint, a Writer for Towards Data Science and Towards AI, a Technical Writer for Machine Learning Mastery, an Ambassador for Deepnote, and a Technical Writer for Start It Up.

很明显,聊天引擎运行完美。

构建语言应用程序后,时间轴上的下一步是了解在云中使用大型语言模型 (LLM) 与在本地运行它们的优缺点。这将帮助您确定哪种方法最适合您的需求。

使用 LlamaIndex 构建 Wiki 文本到语音

我们的下一个项目涉及开发一个应用程序,该应用程序可以响应来自维基百科的问题并将其转换为语音。

代码源和其他信息可在以下 DataCamp 工作区中找到。

网页抓取维基百科页面

首先,我们将从意大利 - 维基百科网页中抓取数据并将其保存为文件夹中的文件。italy_text.txtdata

意大利文本导入

加载数据并构建索引

接下来,我们需要安装必要的软件包。该软件包允许我们使用 API 轻松地将文本转换为语音。elevenlabs

通过使用,我们将加载数据并使用 将 TXT 文件转换为矢量存储。SimpleDirectoryReaderVectorStoreIndex

查询

我们的计划是询问有关该国的一般问题,并收到LLM的答复。query_engine

提示和输出

文本转语音

之后,我们将使用该模块访问 ElevenLabsTTS api。您需要提供 ElevenLabs API 密钥才能启动音频生成功能。您可以在ElevenLabs网站上免费获得API密钥。llama_index.tts

我们将向函数添加响应以生成自然语音。要收听音频,我们将使用 的函数。generate_audioIPython.displayAudio

音频输出

这是一个简单的例子。您可以使用多个模块来创建助手(如 Siri),通过解释您的私人数据来回答您的问题。有关更多信息,请参阅骆驼索引文档。

除了LlamaIndex之外,LangChain还允许您构建基于LLM的应用程序。此外,您可以阅读 LangChain 数据工程和数据应用简介,了解您可以使用 LangChain 做什么的概述,包括 LangChain 解决的问题和数据用例示例。

LlamaIndex索引用例

LlamaIndex提供了一个完整的工具包来构建基于语言的应用程序。最重要的是,您可以使用Llama Hub的各种数据加载器和代理工具来开发具有多种功能的复杂应用程序。

您可以使用一个或多个插件数据加载器将自定义数据源连接到LLM。

来自骆驼中心的数据加载器

您还可以使用代理工具集成第三方工具和 API。

来自骆驼中心的代理工具

简而言之,您可以使用LlamaIndex来构建:

  • 文档问答
  • 聊天机器人
  • 代理
  • 结构化数据
  • 全栈 Web 应用程序
  • 私人设置

要详细了解这些用例,请前往 LlamaIndex 文档

结论

LlamaIndex 提供了一个强大的工具包,用于构建检索增强生成系统,该系统将大型语言模型的优势与自定义知识库相结合。它支持创建特定于域的数据的索引存储,并在推理过程中利用它来为LLM提供相关上下文以生成高质量的响应。

在本教程中,我们了解了 LlamaIndex 及其工作原理。此外,我们构建了一个简历阅读器和文本到语音转换项目,只有几行 Python 代码。使用 LlamaIndex 创建 LLM 应用程序很简单,它提供了一个庞大的插件库、数据加载器和代理。

要成为一名专业的LLM开发人员,下一个自然步骤是注册Master Large Language Models Concepts课程。本课程将使您全面了解LLM,包括其应用,培训方法,道德考虑和最新研究。

原文链接:LlamaIndex:将个人数据添加到LLM (mvrlink.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/103686.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

07_瑞萨GUI(LVGL)移植实战教程之LVGL对接EC11旋转编码器驱动

本系列教程配套出有视频教程,观看地址:https://www.bilibili.com/video/BV1gV4y1e7Sg 7. LVGL对接EC11旋转编码器驱动 本次实验我们向LVGL库中对接EC11旋转编码器驱动,让我们能通过EC11旋转编码器操作UI。 7.1 复制工程 上次实验得出的工…

某米ax3000路由器组网解析

我们使用某米k60手机与某米ax3000 wifi6路由器组网,来分析和学习网络速率与瓶颈限制。 某米 AX3000 路由器简介 某米 AX3000 路由器是一款支持 WiFi 6 的双频路由器,它的 MIMO 是 22,也就是两根天线。MIMO 是 Multiple Input Multiple Outpu…

nvm 在 Windows 上的使用

NVM(Node Version Manager)是一个用于管理和切换多个 Node.js 版本的工具。它允许你在同一台机器上同时安装和使用不同版本的 Node.js,而无需手动安装和卸载。 之前都是只安装一个版本的 node.js,该更新时更新,使得以前…

NFT 合约部署教程

本篇文章主要介绍如何将您的 NFT(ERC-721 Token) 通过智能合约部署到去中心化网络中 Init Project //创建一款ocean的NFT mkdir nft-ocean//进入目录 cd nft-ocean//初始化项目,根据提示填写即可,packname和description填写即可 npm init//添加hardhat…

el-select数据过多的解决(纯前端)

前言 el-select数据过多这个问题应该很多人都遇到过,在生产环境中数据几百、几千条是比较常见的。当数据过多时,就会造成浏览器卡顿,如果客户电脑性能不行,浏览器直接卡死也有可能。 解决 先说一下现在项目中遇到的两种解决方案…

Qt +VTK+Cmake 编译和环境配置(第二篇,中级篇, 重新编译)

1.下载VTK和Cmake 这里不介绍了。我的VTK 8.2.0 cmake 3.27.4 就是不服这编译器了。重新来一次 打开Cmake,把VTK源文件路径和目标路径设置一下(目标路径自己设置,随意) 点击Configure:。 点击下一步 选择好 Qt的gcc…

多通道振弦数据记录仪应用桥梁安全监测的关键要点

多通道振弦数据记录仪应用桥梁安全监测的关键要点 随着近年来桥梁建设和维护的不断推进,桥梁安全监测越来越成为公共关注的焦点。多通道振弦数据记录仪因其高效、准确的数据采集和处理能力,已经成为桥梁安全监测中不可或缺的设备。本文将从以下几个方面…

2023年MySQL实战核心技术第二篇

目录 五 . 日志系统:一条SQL更新语句是如何执行的? 5.1 解释 5.2 重要的日志模块:redo log 5.2.1 解释 5.2.2 WAL(Write-Ahead Logging) 5.2.3 crash-safe。 5.3 重要的日志模块:binlog 5.3 .1 为什么会有…

向量数据库,能让AI再次起飞吗?

9月7-8日,深圳国际会展中心18号馆 来了,来了,腾讯面向产业互联网领域规格最高、规模最大、覆盖最广的年度科技盛会 -——- 腾讯全球数字生态大会。 9 月 7 日,我们将聚焦产业未来发展新趋势,针对云计算、大数据、人工…

【C++】封装map和set(红黑树实现)

前言: 前面,我们学习了set和map的用法,这两个容器可以完成查找,排序等操作,后来我们在学习过二叉搜索树的基础上又学习了两种特殊的二叉搜索树——AVL树和红黑树,他们俩可以是效率进一步提高,其…

深浅拷贝与赋值

数据类型 数据类型 在JavaScript中,数据类型有两大类。一类是基本数据类型,一类是引用数据类型。 基本数据类型有六种:number、string、boolean、null、undefined、symbol。 基本数据类型存放在栈中。存放在栈中的数据具有数据大小确定&a…

GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图

GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。如在科研编程、绘图领域: 1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。 2、数据可…