第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)

基于WIN10的64位系统演示

一、写在前面

上期我们基于TensorFlow环境介绍了多分类建模的误判病例分析。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,分析误判病例,因为它建模速度快。

同样,基于GPT-4辅助编程。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

直接分享代码:

######################################导入包###################################
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")################################导入数据集#####################################
from torchvision import datasets, transforms
from torch.nn.functional import softmax
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):def __getitem__(self, index):original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)path = self.imgs[index][0]tuple_with_path = (original_tuple + (path,))return tuple_with_path# 数据集路径
data_dir = "./MTB-1"# 图像的大小
img_height = 256
img_width = 256# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.8 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']# 创建数据加载器
batch_size = 8
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=0)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes# 获取数据集的类别
class_names = full_dataset.classes# 保存预测结果的列表
results = []###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels# 根据分类任务修改最后一层
# 这里我们改变模型的输出层为4,因为我们做的是四分类
model.classifier[1] = nn.Conv2d(num_ftrs, 4, kernel_size=(1,1))# 修改模型最后的输出层为我们需要的类别数
model.num_classes = 4model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = torch.optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 20# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'SqueezeNet_model-m-s.pth')# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
import os
import pandas as pd
from collections import defaultdict# 判定组别的字典
group_dict = {("COVID-19", "Normal"): "B",("COVID-19", "Pneumonia"): "C",("COVID-19", "Tuberculosis"): "D",("Normal", "COVID-19"): "E",("Normal", "Pneumonia"): "F",("Normal", "Tuberculosis"): "G",("Pneumonia", "COVID-19"): "H",("Pneumonia", "Normal"): "I",("Pneumonia", "Tuberculosis"): "J",("Tuberculosis", "COVID-19"): "K",("Tuberculosis", "Normal"): "L",("Tuberculosis", "Pneumonia"): "M",
}# 创建一个字典来保存所有的图片信息
image_predictions = {}# 循环遍历所有数据集(训练集和验证集)
for phase in ['train', 'val']:# 设置模型的状态model.eval()# 遍历数据for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 计算模型的输出with torch.no_grad():outputs = model(inputs)_, preds = torch.max(outputs, 1)# 循环遍历每一个批次的结果for path, pred in zip(paths, preds):# 提取图片的类别actual_class = os.path.split(os.path.dirname(path))[-1] # 提取图片的名称image_name = os.path.basename(path)# 获取预测的类别predicted_class = class_names[pred]# 判断预测的分组类型if actual_class == predicted_class:group_type = 'A'elif (actual_class, predicted_class) in group_dict:group_type = group_dict[(actual_class, predicted_class)]else:group_type = 'Other'  # 如果没有匹配的条件,可以归类为其他# 保存到字典中image_predictions[image_name] = [phase, actual_class, predicted_class, group_type]# 将字典转换为DataFrame
df = pd.DataFrame.from_dict(image_predictions, orient='index', columns=['Dataset Type', 'Actual Class', 'Predicted Class', 'Group Type'])# 保存到CSV文件中
df.to_csv('result-m-s.csv')

四、改写过程

先说策略:首先,先把二分类的误判病例分析代码改成四分类的;其次,用咒语让GPT-4帮我们续写代码已达到误判病例分析。

提供咒语如下:

①改写{代码1},改变成4分类的建模。代码1为:{XXX};

在{代码1}的基础上改写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”;文件的路劲格式为:例如,“MTB-1\Normal\XXX.png”属于Normal,“MTB-1\COVID-19\XXX.jpg”属于COVID-19,“MTB-1\Pneumonia\XXX.jpeg”属于Pneumonia,“MTB-1\Tuberculosis\XXX.png”属于Tuberculosis;

(2)其次,根据样本预测结果,把样本分为以下若干组:(a)预测正确的图片,全部判定为A组;(b)本来就是COVID-19的图片,预测为Normal,判定为B组;(c)本来就是COVID-19的图片,预测为Pneumonia,判定为C组;(d)本来就是COVID-19的图片,预测为Tuberculosis,判定为D组;(e)本来就是Normal的图片,预测为COVID-19,判定为E组;(f)本来就是Normal的图片,预测为Pneumonia,判定为F组;(g)本来就是Normal的图片,预测为Tuberculosis,判定为G组;(h)本来就是Pneumonia的图片,预测为COVID-19,判定为H组;(i)本来就是Pneumonia的图片,预测为Normal,判定为I组;(j)本来就是Pneumonia的图片,预测为Tuberculosis,判定为J组;(k)本来就是Tuberculosis的图片,预测为COVID-19,判定为H组;(l)本来就是Tuberculosis的图片,预测为Normal,判定为I组;(m)本来就是Tuberculosis的图片,预测为Pneumonia,判定为J组;

(3)居于以上计算的结果,生成一个名为result-m.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”、“判定的组别”。其中,“原始图片的名称”为所有图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为分组类型”为模型预测该样本是哪一个分组;“判定的组别”为根据步骤(2)判定的组别,从A到J一共十组选择一个。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXX}

③还需要根据报错做一些调整即可,自行调整。

最后,看看结果:

模型只运行了2次,所以效果很差哈,全部是预测成了COVID-19。

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

五、结语

深度学习图像分类的教程到此结束,洋洋洒洒29篇,涉及到的算法和技巧也够发一篇SCI了。当然,图像识别还有图像分割和目标识别两块内容,就放到最后再说了。下一趴,我们来介绍时间序列建模!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/104013.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Prometheus+Grafana 搭建应用监控系统

一、背景 完善的监控系统可以提高应用的可用性和可靠性,在提供更优质服务的前提下,降低运维的投入和工作量,为用户带来更多的商业利益和客户体验。下面就带大家彻底搞懂监控系统,使用Prometheus Grafana搭建完整的应用监控系统。 …

Pandas数据中的浅拷贝与深拷贝

pandas库主要有两种数据结构DataFrames和Series。这些数据结构在内部用索引数组和数据数组表示,索引数组标记数据,数据数组包含实际数据。现在,当我们试图复制这些数据结构(DataFrames和Series)时,我们实际…

【Github】git本地仓库建立与远程连接

文章目录 前言一、git简介二、git下载2.1下载地址 三、git安装3.1安装3.2 配置3.3 config设置(增删改查) 四.github与git连接——本地Git仓库4.1 建本地的版本库4.2 源代码放入本地仓库4.3提交仓库 五、github与git的连接——远程连接5.1 创建SSH Key5.2…

调用API接口的一些注意技巧

在实践中我们经常发现,很多同学都是直接请求调用和读取接口数据,而没有做状态码的判断,这在设计角度是非常不合理的。 另外,对于一些实时性要求不高的接口,更合理的做法应该是先把数据拉到本地缓存,再从缓存…

openpnp - 底部相机高级矫正后,底部相机看不清吸嘴的解决方法

文章目录 openpnp - 底部相机高级矫正后,底部相机看不清吸嘴的解决方法概述解决思路备注补充 - 新问题 - N1吸嘴到底部相机十字中心的位置差了很多END openpnp - 底部相机高级矫正后,底部相机看不清吸嘴的解决方法 概述 自从用openpnp后, 无论版本(dev/test), 都发现一个大概…

数字图像处理:亮度对比度-几何变换-噪声处理

文章目录 数字图像增强亮度与对比度转换几何变换图像裁剪尺寸变换图像旋转 噪声处理添加噪声处理噪声 数字图像增强 亮度与对比度转换 图像变换可分为以下两种: 点算子:基于像素变换,在这一类图像变换中,仅仅根据输入像素值计算…

47、TCP的流量控制

从这一节开始,我们学习通信双方应用进程建立TCP连接之后,数据传输过程中,TCP有哪些机制保证传输可靠性的。本节先学习第一种机制:流量控制。 窗口与流量控制 首先,我们要知道的是:什么是流量控制&#xff…

MR源码解析和join案例

MR源码解析 new Job(): 读取本地文件, xml配置job.start(): 启动线程job的run():线程方法 runTasks(): 传入对应的接口,启动map或者reduceMapTask类的run(): 设置map阶段的参数,初始化任务,创建上下文对象 创建读取器LineRecordReader判断是…

Windows下搭建MavLink通信协议环境,并用C++程序测试

搭建环境 git克隆 git clone https://github.com/mavlink/mavlink.git --recursive安装python的future库 pip install future使用可视化工具生成mavlink库 XML是选择消息格式,也可以自定义Out是输出路径Language是生成的语言,我这里是CProtocol是协议…

“五度晟企通”企业发展服务平台正式发布,帮扶企业行稳致远!

在数字中国建设的大背景下,“五度易链”以企业实际发展需求为牵引,以帮扶企业行稳致远为目标,基于全体量产业大数据,运用NLP、AI等新一代信息技术,打造了数字化ToB企业发展服务平台“五度晟企通”,旨在以数…

企微SCRM营销平台MarketGo-ChatGPT助力私域运营

一、前言 ChatGPT是由OpenAI(开放人工智能)研发的自然语言处理模型,其全称为"Conversational Generative Pre-trained Transformer",即对话式预训练转换器。它是GPT系列模型的最新版本,GPT全称为"Gene…

16-数据结构-图的存储结构

简介:主要为图的顺序存储和链式存储。其中顺序存储即邻接矩阵的画法以及代码,邻接矩阵又分为有权图和无权图,区别就是有数据的地方填权值,无数据的地方可以填0或者∞,而有权图和无权图,又细分为有向图和无向…