PY32F003F18之RS485通讯

PY32F003F18将USART2连接到RS485芯片,和其它RS485设备实现串口接收后再转发的功能。

一、测试电路

二、测试程序

#include "USART2.h"
#include "stdio.h"  //getchar(),putchar(),scanf(),printf(),puts(),gets(),sprintf()
#include "string.h" //使能strcpy(),strlen(),memset()
#include "delay.h"
#include "MyUSART.h"//PA0 ------> USART2_TX
//PA1 ------> USART2_RXuint8_t USART2_TX_Buffer[USART2_TX_Buffer_Size]; //USART2发送缓冲区数组;
uint8_t USART2_TX_Buffer_Send_Index=0;          //USART2_TX_Buffer[]的发送索引值;
uint8_t USART2_TX_Buffer_Load_Index=0;          //USART2_TX_Buffer[]的装载索引值
uint8_t USART2_TX_Completed_Flag;
uint8_t USART2_TX_Overtime_Conter;//USART2发送超时计数器uint8_t USART2_RX_Buffer[USART2_RX_Buffer_Size]; //USART2接收缓冲区数组
uint8_t USART2_RX_Buffer_Load_Index;          //USART2_RX_Buffer[]的装载索引值
uint8_t USART2_RX_Time_Count;                 //USART2接收时间计数器
uint8_t USART2_RX_Completed_Flag;void USART2_GPIO_Config(void);
void USART2_NVIC_Cpnfig(void);
void USART2_Mode_Config(uint32_t baudrate);
void USART2_Init(uint32_t baudrate);
void USART2_Load_Send_Data(void);void RS485_Enable_Output_Init(void)
{GPIO_InitTypeDef  GPIO_InitStructure;__HAL_RCC_GPIOB_CLK_ENABLE();//使能GPIOB时钟//初始化GPIOB5GPIO_InitStructure.Pin = GPIO_PIN_5;                  //选择第5脚GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;        //设置引脚工作模式为推挽输出方式GPIO_InitStructure.Pull = GPIO_PULLUP;                //配置引脚使能上拉GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //配置GPIO速度为极高HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);//根据GPIO_InitStructure结构变量指定的参数初始化GPIOB的外设寄存器RS485_ENABLE_PIN_Output_High();
}//函数功能:USART2的IO口配置,PA0是为USART2_TX,PA1是USART2_RX
void USART2_GPIO_Config(void) 
{GPIO_InitTypeDef  GPIO_InitStructureure;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟__HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟GPIO_InitStructureure.Pin = GPIO_PIN_0;     //选择第0脚,PA0是为USART2_TXGPIO_InitStructureure.Mode = GPIO_MODE_AF_PP;            //复用功能推挽模式GPIO_InitStructureure.Pull = GPIO_PULLUP;                //引脚上拉被激活GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //引脚速度为最高速GPIO_InitStructureure.Alternate = GPIO_AF9_USART2;       //将引脚复用为USART2HAL_GPIO_Init(GPIOA, &GPIO_InitStructureure);//根据GPIO_InitStructureure结构变量指定的参数初始化GPIOA的外设寄存器//将PA0初始化为USART2_TXGPIO_InitStructureure.Pin = GPIO_PIN_1;     //选择第1脚,PA1是USART2_RXGPIO_InitStructureure.Mode = GPIO_MODE_AF_PP;            //复用功能推挽模式GPIO_InitStructureure.Pull = GPIO_PULLUP;                //引脚上拉被激活GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //引脚速度为最高速GPIO_InitStructureure.Alternate = GPIO_AF9_USART2;       //将引脚复用为USART2HAL_GPIO_Init(GPIOA, &GPIO_InitStructureure);//根据GPIO_InitStructureure结构变量指定的参数初始化GPIOA的外设寄存器//将PA1初始化为USART2_RX
}//函数功能:设置串口2中断优先级为0x01
void USART2_NVIC_Cpnfig(void)
{HAL_NVIC_SetPriority(USART2_IRQn, 0x01, 0);//设置串口2中断优先级为0x01,0无意义.USART2_IRQn表示中断源为串口2
}//函数功能:波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口
void USART2_Mode_Config(uint32_t baudrate)
{UART_HandleTypeDef UART_HandleStructureure;HAL_StatusTypeDef retData;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟UART_HandleStructureure.Instance          = USART2;              //接口为USART2UART_HandleStructureure.Init.BaudRate     = baudrate;            //波特率为115200bpsUART_HandleStructureure.Init.WordLength   = UART_WORDLENGTH_8B;  //串口字长度为8UART_HandleStructureure.Init.StopBits     = UART_STOPBITS_1;     //串口停止位为1位UART_HandleStructureure.Init.Parity       = UART_PARITY_NONE;    //串口无需奇偶校验UART_HandleStructureure.Init.HwFlowCtl    = UART_HWCONTROL_NONE; //串口无硬件流程控制UART_HandleStructureure.Init.Mode         = UART_MODE_TX_RX;     //串口工作模式为发送和接收模式retData=HAL_UART_Init(&UART_HandleStructureure);//根据UART_HandleStructureure型结构初始化USART2if ( retData!= HAL_OK)//串口初始化失败{}
//USART_ITConfig(USART2,UART_IT_PE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_PE);
//	//串口接收数据时,使能奇偶校验错误时产生中断,Enable the UART Parity Error Interrup//	USART_ITConfig(USART2,UART_IT_ERR,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_ERR);
//	//串口接收数据时,使能帧错误、噪音错误和溢出错误时产生中断
//	//Enable the UART Error Interrupt: (Frame error, noise error, overrun error)USART_ITConfig(USART2,UART_IT_RXNE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_RXNE);开启串口接收中断//串口接收数据时,使能"接收数据寄存器不为空"则产生中断(位RXNE=1)//Enable the UART Data Register not empty Interrupt/在串口中断服务函数中发送数据配置开始//
//	USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXE=1)//Enable the UART Transmit data register empty InterruptUSART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disable the UART Transmit Complete Interrupt//  USART_ITConfig(USART2,UART_IT_TC,ENABLE);
//  __HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TC);//串口发送数据时,使能"串口发送完成"产生中断(位TC=1)//Enable the UART Transmit Complete InterruptUSART_ITConfig(USART2,UART_IT_TC,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure,UART_IT_TC);//串口发送数据时,不使能"串口发送完成"产生中断(位TC=1)
/在串口中断服务函数中发送数据配置结束//HAL_NVIC_EnableIRQ(USART2_IRQn);//使能串口2中断//USART2_IRQn表示中断源为串口2
}//函数功能:
//波特率为115200,数字为8位,停止位为1位,无奇偶校验
//自动波特率配置模式
//允许发送和接收数据,允许接收和发送中断,并使能串口
void My_USART2_Mode_Config(uint32_t baudrate)
{UART_InitTypeDef UART_InitStructureure;UART_AdvFeatureInitTypeDef AdvancedInit_Structureure;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟UART_InitStructureure.BaudRate     = baudrate;            //波特率为115200bpsUART_InitStructureure.WordLength   = UART_WORDLENGTH_8B;  //串口字长度为8UART_InitStructureure.StopBits     = UART_STOPBITS_1;     //串口停止位为1位UART_InitStructureure.Parity       = UART_PARITY_NONE;    //串口无需奇偶校验UART_InitStructureure.HwFlowCtl    = UART_HWCONTROL_NONE; //串口无硬件流程控制UART_InitStructureure.Mode         = UART_MODE_TX_RX;     //串口工作模式为发送和接收模式AdvancedInit_Structureure.AdvFeatureInit=UART_ADVFEATURE_NO_INIT;//不使用自动波特率
//	AdvancedInit_Structureure.AdvFeatureInit=UART_ADVFEATURE_AUTOBAUDRATE_INIT;//使用自动波特率配置
//	AdvancedInit_Structureure.AutoBaudRateEnable=UART_ADVFEATURE_AUTOBAUDRATE_ENABLE;//自动波特率使能
//	AdvancedInit_Structureure.AutoBaudRateMode=UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT;//自动波特率模式USARTx_SetConfig(USART2,&UART_InitStructureure,&AdvancedInit_Structureure);//根据UART_HandleStructureure型结构初始化USART2//USART_ITConfig(USART2,UART_IT_PE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_PE);
//	//串口接收数据时,使能奇偶校验错误时产生中断,Enable the UART Parity Error Interrup//	USART_ITConfig(USART2,UART_IT_ERR,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_ERR);
//	//串口接收数据时,使能帧错误、噪音错误和溢出错误时产生中断
//	//Enable the UART Error Interrupt: (Frame error, noise error, overrun error)USART_ITConfig(USART2,UART_IT_RXNE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_RXNE);开启串口接收中断//串口接收数据时,使能"接收数据寄存器不为空"则产生中断(位RXNE=1)//Enable the UART Data Register not empty Interrupt/在串口中断服务函数中发送数据配置开始//
//	USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXE=1)//Enable the UART Transmit data register empty InterruptUSART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disable the UART Transmit Complete Interrupt//  USART_ITConfig(USART2,UART_IT_TC,ENABLE);
//  __HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TC);//串口发送数据时,使能"串口发送完成"产生中断(位TC=1)//Enable the UART Transmit Complete InterruptUSART_ITConfig(USART2,UART_IT_TC,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure,UART_IT_TC);//串口发送数据时,不使能"串口发送完成"产生中断(位TC=1)
/在串口中断服务函数中发送数据配置结束//HAL_NVIC_EnableIRQ(USART2_IRQn);//使能串口2中断//USART2_IRQn表示中断源为串口2
}//函数功能:
//PA0是为USART2_TX,PA1是USART2_RX
//中断优先级为0x01
//波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口
void USART2_Init(uint32_t baudrate)
{RS485_Enable_Output_Init();USART2_GPIO_Config();//USART2的IO口配置,PA0是为USART2_TX,PA1是USART2_RXUSART2_NVIC_Cpnfig();//设置串口2中断优先级为0x01
//	USART2_Mode_Config(baudrate);//波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口My_USART2_Mode_Config(baudrate);
//波特率为115200,数字为8位,停止位为1位,无奇偶校验
//自动波特率配置模式
//允许发送和接收数据,允许接收和发送中断,并使能串口USART2_RX_Buffer_Load_Index = 0;USART2_RX_Time_Count = 0;USART2_TX_Completed_Flag = 0; //允许再次发送数据memset(USART2_RX_Buffer,0,USART2_RX_Buffer_Size);
}//重定义fputc函数
//函数功能:发送ch的值给USART2串口
int fputc(int ch, FILE *f)
{USART_SendData(USART2, (unsigned char) ch);while( USART_GetFlagStatus(USART2,USART_SR_TC)!= SET); //等待发送完成标志位被置1	return ch;
}//函数功能:串口2发送一个字节
void USART2_SendByte(  unsigned char ch )
{USART_SendData(USART2, ch);while( USART_GetFlagStatus(USART2,USART_SR_TC)!= SET); //等待发送完成标志位被置1	
}//函数功能:启动串口2发送
void USART2_Load_Send_Data(void)
{uint16_t k;RS485_ENABLE_PIN_Output_High();//RS485准备发送HAL_Delay(5);k=strlen((char*)USART2_TX_Buffer);USART2_TX_Buffer_Load_Index = k;启动发送/USART2_TX_Completed_Flag=1;USART2_TX_Overtime_Conter=0;USART2_TX_Buffer_Send_Index = 0;  //设置USART2_TX_Buffer[]的发送索引值为0USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	USART_TXEIE_Config(USART2,ENABLE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"设置为1//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXEIE=1)//Enable the UART Transmit Complete Interrupt
}//函数功能:串口2中断服务程序
void USART2_IRQHandler(void)
{uint8_t RX_temp;if( _HAL_UART_GET_FLAG(USART2,USART_SR_RXNE) )
//	if(	SET==USART_GetITStatus(USART2,USART_SR_RXNE)){//在串口状态寄存器中,发现RXNE=1,且串口控制寄存器1允许接收数据RX_temp = (uint8_t)( USART_ReceiveData(USART2) );//读串口数据USART_ClearITPendingBit(USART2,USART_SR_RXNE);if(RX_temp=='1' && USART2_RX_Time_Count==0)	USART2_RX_Time_Count = 1;//如果接收到帧头为变频器地址为0x1,则启动USART2接收时间计数器if(USART2_RX_Time_Count > 0){USART2_RX_Time_Count = 1;//设置USART2接收时间计数器为1;USART2_RX_Buffer[USART2_RX_Buffer_Load_Index] = RX_temp;//保存接收到的新数据USART2_RX_Buffer_Load_Index++;if(USART2_RX_Buffer_Load_Index>=USART2_RX_Buffer_Size) USART2_RX_Buffer_Load_Index=1;//防止USART2_RX_Buffer[]溢出}//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将ORE位(Overrun错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将NE位(噪声错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将FE位(帧错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将PE位(奇偶校验值错误)清零;//软件读"串口数据寄存器USART_DR",就可以将RXNE位清零}if(	SET==USART_GetITStatus(USART2,USART_SR_TXE)){USART_ClearITPendingBit(USART2,UART_IT_TXE);if(USART2_TX_Buffer_Send_Index < USART2_TX_Buffer_Load_Index)	//未发送完全部数据{USART_SendData(USART2,USART2_TX_Buffer[USART2_TX_Buffer_Send_Index]);//将USART2_TX_Buffer[USART2_TX_Buffer_Send_Index]的值写入串口发送"串口发送数据寄存器"USART2_TX_Buffer_Send_Index++;}else //RS485串口发送完成{USART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//			USART_TXEIE_Config(USART2,DISABLE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disabless Transmit Data Register empty interruptUSART_ITConfig(USART2,UART_IT_TC,ENABLE);//将"串口控制寄存器1(USART_CR1)中的TCIE位"设置为1//串口发送数据时,使能"串口发送完成"产生中断(位TCIE=1)//Enables Transmission complete interrupt	}}if(	SET==USART_GetITStatus(USART2,USART_SR_TC)){USART_ClearITPendingBit(USART2,UART_IT_TC);USART_ITConfig(USART2,UART_IT_TC,DISABLE);//将"串口控制寄存器1(USART_CR1)中的TCIE位"设置为0//串口发送数据时,不使能"串口发送完成"产生中断(位TCIE=0)//Disable the UART Transmit Complete InterruptUSART2_TX_Completed_Flag=2;      //USART2发送完成USART2_TX_Overtime_Conter=0;USART2_TX_Buffer_Send_Index = 0;//清除USART2_TX_Buffer[]的发送索引值USART2_TX_Buffer_Load_Index = 0;//清除USART2_TX_Buffer[]的装载索引值
//		USART2_RX_Time_Count=0;
//		USART2_RX_Buffer_Load_Index =	0;//清接收计数索引RS485_ENABLE_PIN_Output_Low();//更改485为接收	}
}
#include "py32f0xx_hal.h"
#include "SystemClock.h"
#include "USART2.h"
#include "stdio.h"  //getchar(),putchar(),scanf(),printf(),puts(),gets(),sprintf()
#include "string.h" //使能strcpy(),strlen(),memset()
#include "delay.h"const char CPU_Reset_REG[]="\r\nCPU reset!\r\n";
int main(void)
{uint8_t i;delay_init();HAL_Delay(1000);USART2_Init(115200);strcpy((char*)USART2_TX_Buffer,CPU_Reset_REG);USART2_Load_Send_Data();while (1){delay_ms(10);for(i=0;i<USART2_RX_Buffer_Size;i++){if(USART2_RX_Buffer[0]=='1'){delay_ms(10);USART2_RX_Buffer_Load_Index = 0;USART2_RX_Time_Count = 0;USART2_TX_Completed_Flag = 0; //允许再次发送数据memset(USART2_TX_Buffer,0,USART2_TX_Buffer_Size);strcpy((char*)USART2_TX_Buffer,(char*)USART2_RX_Buffer);memset(USART2_RX_Buffer,0,USART2_RX_Buffer_Size);USART2_Load_Send_Data();delay_ms(10);}}}
}
#include "MyUSART.h"void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState);
//void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT);
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT);
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit);//函数功能:
//当NewState=ENABLE,USART_IT=UART_IT_RXNE,使能串口接收寄存器为非空时产生中断,即使能RXNEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_PE,使能串口奇偶校验错误产生中断,即使能PEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_ERR,使能帧错误、噪音错误和溢出错误时产生中断,即使能EIE=1
//当NewState=ENABLE,USART_IT=UART_IT_TXE时,使能串口发送寄存器为空产生中断,即使能TXEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_TC时,使能发送完成产生中断,即使能TCIE=1
void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState)
{if(NewState==DISABLE) _UART_DISABLE_IT(USARTx,USART_IT);else _HAL_UART_ENABLE_IT(USARTx,USART_IT);
}/*
//函数功能:使能串口接收中断
//当NewState=ENABLE,使能串口接收中断
//当NewState=DISABLE,不使能串口接收中断
void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_RXNEIE);//将"串口控制寄存器1(USART_CR1)中的RXNEIE位"置0,不使能RXNE接收产生中断elseSET_BIT(USARTx->CR1,USART_CR1_RXNEIE);//将"串口控制寄存器1(USART_CR1)中的RXNEIE位"置1,使能RXNE接收产生中断
}//函数功能:使能串口奇偶校验错误中断
//当NewState=ENABLE,使能PE奇偶校验错误产生中断
//当NewState=DISABLE,不使能PE奇偶校验错误产生中断
void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_PEIE);//将"串口控制寄存器1(USART_CR1)中的PEIE位"置0,不使能PE奇偶校验错误产生中断elseSET_BIT(USARTx->CR1,USART_CR1_PEIE);//将"串口控制寄存器1(USART_CR1)中的PEIE位"置1,使能PE奇偶校验错误产生中断
}//函数功能:使能串口发送中断
//当NewState=ENABLE,使能TXE发送产生中断
//当NewState=DISABLE,不使能TXE发送产生中断
void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_TXEIE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"置0,不使能TXE发送产生中断elseSET_BIT(USARTx->CR1,USART_CR1_TXEIE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"置1,使能TXE发送产生中断
}//函数功能:使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断
//当NewState=ENABLE,使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断能TXE发送产生中断
//当NewState=DISABLE,不使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断能TXE发送产生中断
void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);//清除"帧错误FE、overrun错误ORE和噪声NF中断使能位"elseSET_BIT(USARTx->CR3, USART_CR3_EIE);//将"串口控制寄存器1(USART_CR3)中的EIE位"置1,使能"帧错误FE、overrun错误ORE和噪声NF“产生中断
}
*///函数功能:读串口状态标志位
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG)
{if( USART_FLAG & READ_REG(USARTx->SR) ) return SET;else  return RESET;
}//函数功能:读串口中断标志位
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT)
{if( USART_IT & READ_REG(USARTx->SR) ) return SET;else  return RESET;
}//函数功能:
//USART_IT=UART_IT_RXNE,清除"串口接收寄存器为非空时产生的中断标志位"
//USART_IT=UART_IT_PE,清除"串口奇偶校验错误产生的中断标志位"
//USART_IT=UART_IT_ERR,清除"帧错误、噪音错误和溢出错误时产生的中断标志位"
//USART_IT=UART_IT_TXE时,清除"串口发送寄存器为空产生的中断标志位"
//USART_IT=UART_IT_TC时,清除"发送完成产生的中断标志位"
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT)
{CLEAR_BIT(USARTx->SR,USART_IT);//将"状态寄存器USART_SR"的USART_IT
}//函数功能:串口发送数据
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data)
{USARTx->DR = (Data & (uint16_t)0x01FF);
}//函数功能:串口接收数据
uint16_t USART_ReceiveData(USART_TypeDef* USARTx)
{return (uint16_t)(USARTx->DR & (uint16_t)0x01FF);
}//函数功能:USARTx_CK引脚配置
void USART_CK_Pin_Config(USART_TypeDef* USARTx, FunctionalState NewState)
{if(NewState==DISABLE){CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);//清除"串口控制寄存器2(USART_CR2)中的CLKEN位",不使能USARTx_CK引脚}else{SET_BIT(USARTx->CR2, USART_CR2_CLKEN);//设置"串口控制寄存器2(USART_CR2)中的CLKEN位",使能USARTx_CK引脚}
}//函数功能:USARTx半双工通讯配置
//NewState=DISABLE,配置串口为"非半双工模式"
//NewState=ENABLE,配置串口为"半双工模式"
void USART_Half_Duplex_Config(USART_TypeDef* USARTx, FunctionalState NewState)
{if(NewState==DISABLE){CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);//清除"串口控制寄存器3(USART_CR3)中的HDSEL位",配置串口为"非半双工模式"}else{SET_BIT(USARTx->CR3, USART_CR3_HDSEL);//设置"串口控制寄存器3(USART_CR3)中的HDSEL位",配置串口为"半双工模式"}
}//函数工能:使用自动波特率配置
//AdvancedInit->AdvFeatureInit=UART_ADVFEATURE_AUTOBAUDRATE_INIT;//使用自动波特率配置
//AdvancedInit->AutoBaudRateEnable=UART_ADVFEATURE_AUTOBAUDRATE_ENABLE;//自动波特率使能
//AdvancedInit->AutoBaudRateMode=UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT;//自动波特率模式
void USART_Automatic_Baudrate_Detection_Config(USART_TypeDef* USARTx, UART_AdvFeatureInitTypeDef *AdvancedInit)
{/* Check whether the set of advanced features to configure is properly set */assert_param(IS_UART_ADVFEATURE_INIT(AdvancedInit->AdvFeatureInit));/* if required, configure auto Baud rate detection scheme */if (HAL_IS_BIT_SET(AdvancedInit->AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)){assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx));assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(AdvancedInit->AutoBaudRateEnable));MODIFY_REG(USARTx->CR3, USART_CR3_ABREN, AdvancedInit->AutoBaudRateEnable);/* set auto Baudrate detection parameters if detection is enabled */if (AdvancedInit->AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE){assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(AdvancedInit->AutoBaudRateMode));MODIFY_REG(USARTx->CR3, USART_CR3_ABRMODE, AdvancedInit->AutoBaudRateMode);}}
}//函数功能:将UART_InitTypeDef型结构变量写入"串口控制寄存器"
void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit)
{uint32_t tmpreg;uint32_t pclk;/* Check the parameters */assert_param(IS_UART_BAUDRATE(Init->BaudRate));assert_param(IS_UART_STOPBITS(Init->StopBits));assert_param(IS_UART_PARITY(Init->Parity));assert_param(IS_UART_MODE(Init->Mode));_HAL_UART_DISABLE(USARTx);//将"串口控制寄存器1(USART_CR1)中的UE位"置0,不使能串口/*-------------------------- USART CR2 Configuration -----------------------*//* Configure the UART Stop Bits: Set STOP[13:12] bitsaccording to Init->StopBits value */MODIFY_REG(USARTx->CR2, USART_CR2_STOP, Init->StopBits);//使用Init->StopBits的值修改"串口控制寄存器2(USART_CR2)中的STOP位",用来设置停止位的位数/*-------------------------- USART CR1 Configuration -----------------------*//* Configure the UART Word Length, Parity and mode:Set the M bits according to Init->WordLength valueSet PCE and PS bits according to Init->Parity valueSet TE and RE bits according to Init->Mode valueSet OVER8 bit according to Init->OverSampling value */#if defined(USART_CR3_OVER8)tmpreg = (uint32_t)Init->WordLength | Init->Parity | Init->Mode;//将"数据长度,奇偶校验,串口发送和接收模式合并为字,准备修改"串口控制寄存器1(USART_CR1)MODIFY_REG(USARTx->CR1,(uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE),tmpreg);tmpreg = (uint32_t) Init->OverSampling;//准备修改"串口控制寄存器3(USART_CR3)中的OVER8位"MODIFY_REG(USARTx->CR3,(uint32_t)(USART_CR3_OVER8),tmpreg);
#elsetmpreg = (uint32_t)Init->WordLength | Init->Parity | Init->Mode;MODIFY_REG(USARTx->CR1,(uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE),tmpreg);
#endif /* USART_CR3_OVER8 *//*-------------------------- USART CR3 Configuration -----------------------*//* Configure the UART HFC: Set CTSE and RTSE bits according to Init->HwFlowCtl value */MODIFY_REG(USARTx->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), Init->HwFlowCtl);//修改"串口控制寄存器3中的RTS和CTS位"#if defined(USART_CR3_OVER8)/* Check the Over Sampling */if(Init->OverSampling == UART_OVERSAMPLING_8){/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();//读取PCLK1时钟频率USARTx->BRR = UART_BRR_SAMPLING8(pclk, Init->BaudRate);//设置串口波特率}else{/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();//读取PCLK1时钟频率USARTx->BRR = UART_BRR_SAMPLING16(pclk, Init->BaudRate);//设置串口波特率}
#else/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();USARTx->BRR = UART_BRR_SAMPLING16(pclk, Init->BaudRate);#endif /* USART_CR3_OVER8 */if( AdvancedInit->AdvFeatureInit != UART_ADVFEATURE_NO_INIT ){//使用自动波特率配置USART_Automatic_Baudrate_Detection_Config(USARTx,AdvancedInit);}USART_CK_Pin_Config(USARTx,DISABLE);//不使用USARTx_CK引脚配置USART_Half_Duplex_Config(USARTx,DISABLE);//配置串口为"非半双工模式"_HAL_UART_ENABLE(USARTx);//使能串口
}
#ifndef __MyUSART_H
#define __MyUSART_H#include "py32f0xx_hal.h"#define _HAL_UART_ENABLE(__INSTANCE__)               ((__INSTANCE__)->CR1 |=  USART_CR1_UE)
//将"串口控制寄存器1(USART_CR1)中的UE位"置1,使能串口#define _HAL_UART_DISABLE(__INSTANCE__)              ((__INSTANCE__)->CR1 &=  ~USART_CR1_UE)
//将"串口控制寄存器1(USART_CR1)中的UE位"置0,不使能串口#define _HAL_UART_ENABLE_IT(__INSTANCE__, __INTERRUPT__)   ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__INSTANCE__)->CR1 |= ((__INTERRUPT__) & UART_IT_MASK)): \(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__INSTANCE__)->CR2 |= ((__INTERRUPT__) & UART_IT_MASK)): \((__INSTANCE__)->CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
//使能串口中断#define _UART_DISABLE_IT(__INSTANCE__, __INTERRUPT__)  ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__INSTANCE__)->CR1 &= ~((__INTERRUPT__) & UART_IT_MASK)): \(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__INSTANCE__)->CR2 &= ~((__INTERRUPT__) & UART_IT_MASK)): \((__INSTANCE__)->CR3 &= ~ ((__INTERRUPT__) & UART_IT_MASK)))
//不使能串口中断#define _HAL_UART_GET_FLAG(__INSTANCE__, __FLAG__) (((__INSTANCE__)->SR & (__FLAG__)) == (__FLAG__))extern void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState);
//extern void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//extern void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//extern void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
extern FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
extern ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT);
extern void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT);
extern void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
extern uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
extern void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit);
#endif /* __MyUSART_H */
#include "delay.h"static uint8_t  fac_us=0; //us延时倍乘数void delay_init(void);
void delay_us(uint32_t nus);
void delay_ms(uint32_t nms);//函数功能:配置"SysTick定时器"每1ms中断一次,优先级为最低
void delay_init(void)
{fac_us=SystemCoreClock/1000000;//不论是否使用OS,fac_us都需要使用uwTickFreq=HAL_TICK_FREQ_1KHZ;//准备配置"SysTick定时器"每1ms中断一次//配置"SysTick定时器"时钟源为系统时钟,并使能中断//HAL_TICK_FREQ_10HZ= 100,"SysTick计数器"的中断周期为100ms//HAL_TICK_FREQ_100HZ= 10,"SysTick计数器"的中断周期为10ms//HAL_TICK_FREQ_1KHZ = 1,"SysTick计数器"的中断周期为1msHAL_InitTick(PRIORITY_LOWEST);//配置"SysTick定时器"每1ms中断一次,优先级为最低
//	HAL_Init();//配置"SysTick定时器"每1ms中断一次,优先级为最低HAL_SetTickFreq(uwTickFreq);//设置"SysTick滴答定时器"的中断周期为uwTickFreq个毫秒
}//函数功能:延时nus
//nus:要延时的us数.	
//nus:0~204522252(最大值即2^32/fac_us)	    								   
void delay_us(uint32_t nus)
{		uint32_t ticks;uint32_t told,tnow,tcnt=0;uint32_t reload=SysTick->LOAD;//读取"SysTick定时器"自动重装载值ticks=nus*fac_us; 						//需要的节拍数 told=SysTick->VAL;        	  //读取"系统滴答定时器的计数值"while(1){tnow=SysTick->VAL;//读取"系统滴答定时器的计数值"	if(tnow!=told){	    if(tnow<told)tcnt+=told-tnow;	//这里注意一下SYSTICK是一个递减的计数器就可以了.else tcnt+=reload-tnow+told;	    told=tnow;if(tcnt>=ticks)break;			//时间超过/等于要延迟的时间,则退出.}		}										    
}//函数功能:延时nms
//nms:要延时的ms数
//nms:0~65535
void delay_ms(uint32_t nms)
{	delay_us((uint32_t)(nms*1000));//普通方式延时
}//HAL库接口函数
//HAL_Delay(x)延时x毫秒,x<0xFFFFFFFF,至少需要延时一个周期
//HAL_SuspendTick();不使能"SysTick滴答定时器"中断
//HAL_ResumeTick();使能"SysTick滴答定时器"中断
//HAL_GetTickFreq();读取"SysTick滴答定时器"的中断频率
//HAL_SetTickFreq(Freq);设置"SysTick滴答定时器"的中断频率为Freq
//HAL_GetTickPrio();读取"SysTick滴答定时器"的中断优先级
//HAL_GetTick();读取"SysTick滴答定时器"的中断次数计数器uwTick
//HAL_IncTick();供SysTick_Handler()调用
//uwTickFreq=HAL_TICK_FREQ_1KHZ;//准备配置"SysTick定时器"每1ms中断一次
//HAL_InitTick(PRIORITY_LOWEST);//配置"SysTick定时器"每1ms中断一次,优先级为最低
//HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
//设置系统滴答定时器的时钟源
//CLKSource=SYSTICK_CLKSOURCE_HCLK_DIV8时,系统滴答定时器的时钟源为系统时钟的8分频
//CLKSource=SYSTICK_CLKSOURCE_HCLK,系统滴答定时器的时钟源为系统时钟

三、测试结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107556.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

房地产小程序 | 小程序赋能,房地产业务数字化升级

随着科技的不断发展&#xff0c;房地产行业正逐渐向数字化转型。在这个过程中&#xff0c;房地产小程序成为了一种重要的工具&#xff0c;可以帮助房地产企业提供更好的购房体验、增加销售额&#xff0c;并实现管理的便捷化。 优点 便捷购房体验&#xff1a;房地产小程序为用户…

第一颗国产 单/双端口 MIPI CSI/DSI 至 HDMI 1.4 发射器 芯片LT9611

1. 描述 LT9611 MIPI DSI/CSI 至 HDMI1.4 桥接器具有双端口 MIPI D-PHY 接收器前端配置&#xff0c;每个端口有 4 个数据通道&#xff0c;每个数据通道以 2Gbps 的速度工作&#xff0c;最大输入带宽为 16Gbps。 该桥接器提供一个 HDMI 数据输出&#xff0c;具有可选的 …

Python之设计模式

一、设计模式_工厂模式实现 设计模式是面向对象语言特有的内容&#xff0c;是我们在面临某一类问题时候固定的做法&#xff0c;设计模式有很多种&#xff0c;比较流行的是&#xff1a;GOF&#xff08;Goup Of Four&#xff09;23种设计模式。当然&#xff0c;我们没有必要全部学…

第3章_瑞萨MCU零基础入门系列教程之开发环境搭建与体验

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id728461040949 配套资料获取&#xff1a;https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总&#xff1a; ht…

nios里面打开eclipse遇到Unresolved inclusion: “system.h“等问题

问题&#xff1a;在Nios中打开软核部分代码时&#xff0c;遇到一堆Unresolved inclusion: "system.h"等问题报错 原因&#xff1a;bsp文件和软核没关联&#xff0c;导致找不到头文件地址&#xff0c;关联一下就好 解决步骤&#xff1a; 右键bsp文件&#xff0c;点击…

Redis的用法及面试题(删除策略、企业级解决方案)

目录 一、Redis删除策略 &#xff08;1&#xff09;过期数据 &#xff08;2&#xff09;数据删除策略 1.定时删除 2.惰性删除 &#xff08;3&#xff09;逐出算法 二、企业级解决方案 &#xff08;1&#xff09;缓存预热 &#xff08;2&#xff09;缓存雪崩 &…

excel单元格多行文本的excel 提取 公式

excel单元格多行文本的excel 提取 公式 第一行&#xff1a; TRIM(MID(SUBSTITUTE(A$1,CHAR(10),REPT(" ",160)),ROW(A1)*160-159,160)) 第9行&#xff1a; TRIM(MID(SUBSTITUTE(A$1,CHAR(10),REPT(" ",160)),ROW(A9)*160-159,160)) Excel如何提取某一单元…

【大数据】美团 DB 数据同步到数据仓库的架构与实践

美团 DB 数据同步到数据仓库的架构与实践 1.背景2.整体架构3.Binlog 实时采集4.离线还原 MySQL 数据5.Kafka2Hive6.对 Camus 的二次开发7.Checkdone 的检测逻辑8.Merge9.Merge 流程举例10.实践一&#xff1a;分库分表的支持11.实践二&#xff1a;删除事件的支持12.总结与展望 1…

html5学习笔记21-css简略学习

CSS https://www.runoob.com/css/css-tutorial.html CSS (Cascading Style Sheets&#xff0c;层叠样式表&#xff09;&#xff0c;是一种用来为结构化文档&#xff08;如 HTML 文档或 XML 应用&#xff09;添加样式&#xff08;字体、间距和颜色等&#xff09;的计算机语言&a…

Windows环境下Elasticsearch相关软件安装

Windows环境下Elasticsearch相关软件安装 本文将介绍在 windows 环境下安装 Elasticsearch 相关的软件。 1、安装Elasticsearch 1.1 安装jdk ElasticSearch是基于lucence开发的&#xff0c;也就是运行需要java jdk支持&#xff0c;所以要先安装JAVA环境。 由于ElasticSear…

合宙Air724UG LuatOS-Air LVGL API控件-二维码(Qrcode)

二维码&#xff08;Qrcode&#xff09; 示例代码 qrcodelvgl.qrcode_create(lvgl.scr_act(),nil)lvgl.qrcode_set_txt(qrcode,"https://doc.openluat.com/home")lvgl.obj_set_size(qrcode,400,400)lvgl.obj_align(qrcode, nil, lvgl.ALIGN_CENTER, 0, 0)创建 可以通…

【服务器 | 宝塔】宝塔面板卸载重装教程:清理删除宝塔面板并重新开始

宝塔面板卸载重装怎么操作?我们很多用户可能安装宝塔之后会经常看一下有没有新版本&#xff0c;如果有新版直接右上角 宝塔面板卸载重装怎么操作?我们很多用户可能安装宝塔之后会经常看一下有没有新版本&#xff0c;如果有新版直接右上角”更新”升级一下版本就可以了&#…