27.EI文章复现《高比例清洁能源接入下计及需求响应的配电网重构》

下载地址:高比例清洁能源接入下计及需求响应的配电网重构

1主要内容

该程序复现《高比例清洁能源接入下计及需求响应的配电网重构》,以考虑网损成本、弃风弃光成本和开关操作惩罚成本的综合成本最小为目标,针对配电网重构模型的非凸性,引入中间变量并对其进行二阶锥松弛,构建混合整数凸规划模型,采用改进的 IEEE33 节点配电网进行算例仿真,分析了需求响应措施和清洁能源渗透率对配电网重构结果的影响。该程序复现效果和出图较好(详见程序结果部分),注释清楚,方便学习!

注意:该程序运行环境为matlab+mosek,需要各位同学下载并安装mosek求解器,通过官网可以申请学术许可,可免费使用365天。

图片

  • 目标函数

目标函数为配电网综合运行成本最小,其中考虑了网损成本、弃风弃光成本以及分段开关操作惩罚成本。

图片

  • 重要约束条件

常规的功率平衡、节点电压电流等约束不再赘述,重点分析一下网络结构约束和需求响应约束。

网络结构约束:

配电网在重构过程中需满足连通性约束与辐射状约束,具体模型为:

图片

该网络结构约束是采用虚拟潮流方式,之前有几个重构代码也是采用虚拟潮流形式,参考的是《A New Model for Resilient Distribution Systems by Microgrids Formation》,具体模型如下:

图片

仔细观察不难发现,上面的模型是下面的简洁版,在不考虑分布式电源节点对网络切割情况下,两者是等价的。

经验证(见结果图最后一张),该种约束方式下能够保证网络的连通性和辐射性。

需求响应约束:

在配电网中采用需求响应策略,可以在降低负荷峰谷差的同时,减少配电网运行的综合成本,提高配电网运行的经济性和可靠性。

图片

在该模型中,电价弹性系数为已知量,需求响应前后总负荷保持一致。

2部分代码

%% 系统参数mpc = IEEE33;% 风光负荷曲线P_wind0=[0.21 0.07 0.11 0.21 0.38 0.42 0.12 0.19 0.22 0.47 0.55 0.71 0.80 0.99 0.89 0.99 0.99 0.98 0.99 0.99 0.98 0.77 0.61 0.19];P_pv0=[0 0 0 0 0.17 0.24 0.40 0.54 0.60 0.51 0.35 0.29 0.27 0.25 0.18 0.10 0.06 0 0 0 0 0 0 0];P_L0=[0.37 0.33 0.31 0.28 0.27 0.28 0.28 0.27 0.26 0.24 0.30 0.76 0.82 0.86 0.76 0.54 0.43 0.65 0.81 0.95 0.99 0.91 0.65 0.19];nb=33;                                      % 节点数ns=1;                                       % 电源节点数nl=37;                                      % 支路数n_pv=2;                                     % 光伏数n_wind=3;                                   % 风机数n_ess=2;                                    % 储能数T=24;                                       % 调度时段总数F=0.6;                                      % 渗透率P_DG=sum(mpc.bus(:,3))*F/mpc.baseMVA/5;     % DG额定容量P_wind_max=P_DG*P_wind0;                    % 风机最大有功P_pv_max=P_DG*P_pv0;                        % 光伏最大有功P_load=mpc.bus(:,3)/mpc.baseMVA*P_L0;     % 有功负荷Q_load=mpc.bus(:,4)/mpc.baseMVA*P_L0;       % 无功负荷Sij_max=15/mpc.baseMVA;                     % 支路功率最大值r_ij=mpc.branch(:,3)*ones(1,T);             % 线路电阻x_ij=mpc.branch(:,4)*ones(1,T);             % 线路电抗wind=[9 25 32];                             % 风机接入位置pv=[17 22];                                 % 光伏接入位置ess=[7 25];                                 % 储能接入位置Umax=[1;1.06*1.06*ones(32,1)];              % 电压上限的平方Umin=[1;0.94*0.94*ones(32,1)];              % 电压下限的平方I_max=10;                                   % 电流上限值P_ch_max=0.2/mpc.baseMVA;                   % 充电功率上限0.2MWP_dis_max=0.2/mpc.baseMVA;                  % 放电功率上限0.2MWE_min=0.15/mpc.baseMVA;                     % 储能容量下限0.15MWhE_max=0.8/mpc.baseMVA;                      % 储能容量上限0.8MWhn_ch=0.9;                                   % 充电效率为0.9n_dis=0.85;                                 % 放电效率为0.85E0=0.3/mpc.baseMVA;                         % 初始荷电状态为0.3MWhQ_CB_st=0.15/mpc.baseMVA;                   % 单个电容器无功补偿容量0.15MvarN_CB_max=5;                                 % 最大可投切电容器数目ksai=0.5;                                   % 弹性系数c1=3;                                       % 网络损耗成本系数3元/kWhc2=1.2;                                     % 弃风弃光惩罚系数1.2元/kWhc3=15;                                      % 分段开关操作惩罚成本系数15元/次rho=zeros(1,24);                            % 分时电价rho([12:15,19:23])=1.026;                   % 峰时电价rho([7:11,16:18])=0.691;                    % 平时电价rho([1:6,24])=0.2561;                       % 谷时电价rho0=0.35;                                  % 初始节点电价为0.35元/kWhM=1.1*1.1 - 0.9*0.9;                        % 中间变量                   P_g_max=10/mpc.baseMVA;                     % 电源有功功率最大值Q_g_max=10/mpc.baseMVA;                     % 电源无功功率最大值branch_to_node=zeros(nb,nl);                % 流入节点的支路branch_from_node=zeros(nb,nl);              % 流出节点的支路for k=1:nl    branch_to_node(mpc.branch(k,2),k)=1;     %举例说明,k=1,流入节点2是支路1;同时流出节点1的是支路1;同理,k=2,流入节点3且流出节点2的是支路2;这一步建立支路和节点的连接关系    branch_from_node(mpc.branch(k,1),k)=1;end
%% 优化变量alpha_ij=binvar(nl,1);                      % 支路开断情况U_i=sdpvar(nb,T);                           % 电压的平方I_ij=sdpvar(nl,T);                          % 电流的平方P_ij=sdpvar(nl,T);                          % 线路有功功率Q_ij=sdpvar(nl,T);                          % 线路无功功率P_wind=sdpvar(n_wind,T);                    % 风机输出功率P_pv=sdpvar(n_pv,T);                        % 光伏输出功率Q_wind=sdpvar(n_wind,T);                    % 风机输出功率Q_pv=sdpvar(n_pv,T);                        % 光伏输出功率P_ch=sdpvar(n_ess,T);                       % 储能充电功率P_dis=sdpvar(n_ess,T);                      % 储能充电功率y_ch=binvar(n_ess,T);                       % 储能充电状态y_dis=binvar(n_ess,T);                      % 储能放电状态E_ESS=sdpvar(n_ess,T);                      % 储能荷电状态N_CB=intvar(1);                             % 投切的电容器数量P_cur=sdpvar(nb,T);                         % 需求响应后的负荷量P_g=sdpvar(nb,T);                           % 节点注入有功Q_g=sdpvar(nb,T);                           % 节点注入无功P_g_dot=sdpvar(nb,1);                       % 虚拟电源P_L_dot=ones(nb,1);                         % 虚拟负荷P_ij_dot=sdpvar(nl,1);                      % 虚拟功率
%% 约束条件Constraints = [];%% 1.潮流约束m_ij=(1-alpha_ij)*M*ones(1,T); Constraints = [Constraints, P_g-P_cur+branch_to_node*P_ij-branch_to_node*(I_ij.*r_ij)-branch_from_node*P_ij == 0];Constraints = [Constraints, Q_g-Q_load+branch_to_node*Q_ij-branch_to_node*(I_ij.*x_ij)-branch_from_node*Q_ij == 0];Constraints = [Constraints,U_i(mpc.branch(:,1),:)-U_i(mpc.branch(:,2),:)<= m_ij + 2*r_ij.*P_ij + 2*x_ij.*Q_ij - ((r_ij.^2 + x_ij.^2)).*I_ij];Constraints = [Constraints,U_i(mpc.branch(:,1),:)-U_i(mpc.branch(:,2),:)>= -m_ij + 2*r_ij.*P_ij + 2*x_ij.*Q_ij - ((r_ij.^2 + x_ij.^2)).*I_ij];for k=1:nl    for t=1:T        Constraints = [Constraints, cone([2*P_ij(k,t) 2*Q_ij(k,t) I_ij(k,t)-U_i(mpc.branch(k,1),t)],I_ij(k,t)+U_i(mpc.branch(k,1),t))];    endendConstraints = [Constraints, Sij_max^2*alpha_ij*ones(1,T) >= P_ij.^2+Q_ij.^2];Constraints = [Constraints, I_max.^2.*alpha_ij*ones(1,T) >= I_ij , I_ij >= 0];Constraints = [Constraints, Umin*ones(1,T) <= U_i,U_i <= Umax*ones(1,T)];
%% 2.拓扑约束Constraints = [Constraints , sum(alpha_ij) == nb-ns];Constraints = [Constraints , P_g_dot(2:33) == 0 , P_g_dot(1) <= nb];Constraints = [Constraints , P_g_dot-P_L_dot+branch_to_node*P_ij_dot-branch_from_node*P_ij_dot == 0];
%% 3.DG功率约束Constraints = [Constraints , P_pv >= 0 , P_wind >= 0];Constraints = [Constraints , P_pv <= ones(n_pv,1)*P_pv_max , P_wind <= ones(n_wind,1)*P_wind_max];
%% 4.储能约束Constraints = [Constraints , P_ch >= 0 , P_dis >= 0 , y_ch+y_dis <= 1];Constraints = [Constraints , P_ch <= y_ch*P_ch_max , P_dis <= y_dis*P_dis_max];Constraints = [Constraints , E_ESS(:,1) ==n_ch*P_ch(:,1)-1/n_dis*P_dis(:,1)+E0];Constraints = [Constraints , E_ESS >= E_min , E_ESS <= E_max];for t=2:T    Constraints = [Constraints , E_ESS(:,t) ==n_ch*P_ch(:,t)-1/n_dis*P_dis(:,t)+E_ESS(:,t-1)];

3程序结果

图片

图片

图片

图片

图片

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107714.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

告别HR管理繁琐,免费低代码平台来帮忙

编者按&#xff1a;本文着重介绍了使用免费且高效的低代码平台实现的HR管理系统在一般日常人力资源管理工作中的关键作用。 关键词&#xff1a;低代码平台、HR管理系统 1.HR管理系统有什么作用&#xff1f; HR管理系统作为一款数字化工具&#xff0c;可为企业提供全方位的人力资…

电脑更换硬盘的时候怎么迁移系统?

为什么需要迁移系统&#xff1f; 在一些关于电脑DIY或Windows相关的论坛社区中&#xff0c;有很多人发帖询问怎么迁移系统。那么这个系统迁移&#xff0c;究竟是何含义呢&#xff1f;通俗易懂地解释一下&#xff0c;就是创建一个完整无缺的操作系统复制品&#xff0c;它与系…

vue2+three.js(入门级)

20232.9.12今天我学习了如何使用vue2three制作一个3d图形&#xff0c;效果&#xff1a; 首先安装&#xff1a; npm install three 相关代码&#xff1a; <!--3d基础版&#xff0c;实现单个3d图形--> <template><div><div id"content"/><…

水轮发电机组预测性维护的实现:基于PreMaint电气信号特征分析

在现代电力工业中&#xff0c;水轮发电机组扮演着至关重要的角色&#xff0c;为我们的生活和工业生产提供了可靠的电力供应。然而&#xff0c;这些发电机组的长期运行不可避免地伴随着各种挑战&#xff0c;最显著的是转子振动故障。这种故障可能会导致设备停机、维修成本增加以…

59从零开始学Java之StringBuilder与StringBuffer

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 最近的这几篇文章&#xff0c;壹哥一直在给大家讲解字符串相关的内容。其实字符串按照可变性&#xf…

rtthread下基于spi device架构MCP25625驱动

1.CAN驱动架构 由于采用了RTT的spi device架构&#xff0c;不能再随心所遇的编写CAN驱动 了&#xff0c;之前内核虽然采用了RTT内核&#xff0c;但是驱动并没有严格严格按RTT推荐的架构来做&#xff0c;这次不同了&#xff0c;上次是因为4个MCP25625挂在了4路独立的SPI总线上&…

一文讲透java弱引用以及使用场景

概念 大部分情况下我们看到是强引用&#xff0c;比如下面这一行: String str1 new String("abc");变量str1被用来存放一个string对象的强引用上。强引用在你正在使用时这个对象时&#xff0c;一般是不会被垃圾回收器回收的。当出现内存空间不足时&#xff0c;虚拟…

99%的人都不知道的免费在线制作电子画册的网站

你是否曾经想过自己制作一本精美的电子画册&#xff1f; 现在&#xff0c;小编给大家分享一款免费在线制作电子画册的工具&#xff0c;可以帮助你轻松实现。这个网站不仅提供了丰富的模板和素材&#xff0c;还让你在制作过程中可以随时预览和编辑&#xff0c;无需任何排版设计…

详解梯度下降从BGD到ADAM - [北邮鲁鹏]

文章目录 参考文章及视频导言梯度下降的原理、过程一、什么是梯度下降&#xff1f;二、梯度下降的运行过程 批量梯度下降法(BGD)随机梯度下降法(SGD)小批量梯度下降法(MBGD)梯度算法的改进梯度下降算法存在的问题动量法(Momentum)动量法还有什么效果&#xff1f; 自适应梯度(Ad…

RJ45网络信号浪涌保护器解决方案

RJ45网络信号浪涌保护器是一种用于保护网络设备免受雷击或其他高压电流干扰的装置&#xff0c;它可以有效地吸收和释放信号线路上的过电压&#xff0c;从而避免设备损坏或数据丢失。 RJ45信号浪涌保护器的应用领域和施工方案如下&#xff1a; 地凯科技RJ45网络信号浪涌保护器…

PCL 计算字符型ply文件的法向量

文章目录 ply格式计算法向量意义具体代码 ply格式 PLY&#xff08;Polygon File Format&#xff09;是一种用于存储三维模型数据的文件格式。在PLY文件中&#xff0c;法向量是指每个顶点或面片的法向量&#xff0c;用于描述表面的朝向和光照计算。 在PLY文件中&#xff0c;法…

Unity之创建第一个2D游戏项目

一 Unity环境配置 1.1 Untity资源官网下载&#xff1a;https://unity.cn/releases 1.2 Unity Hub集成环境&#xff0c;包含工具和项目的管理 1.3 Unity Editor编辑器 1.4 Visual Studio 2022脚本编辑器 1.5 AndroidSKD&#xff0c;JDK&#xff0c;NDK工具&#xff0c;用于and…