ESIM实战文本匹配

引言

今天我们来实现ESIM文本匹配,这是一个典型的交互型文本匹配方式,也是近期第一个测试集准确率超过80%的模型。

我们来看下是如何实现的。

模型架构

image-20230904205100099

我们主要实现左边的ESIM网络。

从下往上看,分别是

  • 输入编码层(Input Ecoding)
    对前提和假设进行编码
    把语句中的单词转换为词向量,得到一个向量序列
    把两句话的向量序列分别送入各自的Bi-LSTM网络进行语义特征抽取
  • 局部推理建模层(Local Inference Modeling)
    就是注意力层
    通过注意力层捕获LSTM输出向量间的局部特征
    然后通过元素级方法构造了一些特征
  • 推理组合层(Inference Composition)
    和输入编码层一样,也是Bi-LSTM
    在捕获了文本间的注意力特征后,进一步做的融合/提取语义特征工作
  • 预测层(Prediction)
    拼接平均池化和最大池化后得到的向量
    接Softmax进行分类

模型实现

class ESIM(nn.Module):def __init__(self,vocab_size: int,embedding_size: int,hidden_size: int,num_classes: int,lstm_dropout: float = 0.1,dropout: float = 0.5,) -> None:"""_summary_Args:vocab_size (int): the size of the Vocabularyembedding_size (int): the size of each embedding vectorhidden_size (int): the size of the hidden layernum_classes (int): the output sizelstm_dropout (float, optional): dropout ratio in lstm layer. Defaults to 0.1.dropout (float, optional): dropout ratio in linear layer. Defaults to 0.5."""super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_size)# lstm for input embeddingself.lstm_a = nn.LSTM(hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)self.lstm_b = nn.LSTM(hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)

首先有一个嵌入层,然后对于输入的两个句子分别有一个Bi-LSTM。

然后定义推理组合层:

        # lstm for augment inference vectorself.lstm_v_a = nn.LSTM(8 * hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)self.lstm_v_b = nn.LSTM(8 * hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)

完了就是最后的预测层,这里是一个多层前馈网络:

   self.predict = nn.Sequential(nn.Linear(8 * hidden_size, 2 * hidden_size),nn.ReLU(),nn.Dropout(dropout),nn.Linear(2 * hidden_size, hidden_size),nn.ReLU(),nn.Dropout(dropout),nn.Linear(hidden_size, num_classes),)

初始化函数的完整实现为:

class ESIM(nn.Module):def __init__(self,vocab_size: int,embedding_size: int,hidden_size: int,num_classes: int,lstm_dropout: float = 0.1,dropout: float = 0.5,) -> None:"""_summary_Args:vocab_size (int): the size of the Vocabularyembedding_size (int): the size of each embedding vectorhidden_size (int): the size of the hidden layernum_classes (int): the output sizelstm_dropout (float, optional): dropout ratio in lstm layer. Defaults to 0.1.dropout (float, optional): dropout ratio in linear layer. Defaults to 0.5."""super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_size)# lstm for input embeddingself.lstm_a = nn.LSTM(hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)self.lstm_b = nn.LSTM(hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)# lstm for augment inference vectorself.lstm_v_a = nn.LSTM(8 * hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)self.lstm_v_b = nn.LSTM(8 * hidden_size,hidden_size,batch_first=True,bidirectional=True,dropout=lstm_dropout,)self.predict = nn.Sequential(nn.Linear(8 * hidden_size, 2 * hidden_size),nn.ReLU(),nn.Dropout(dropout),nn.Linear(2 * hidden_size, hidden_size),nn.ReLU(),nn.Dropout(dropout),nn.Linear(hidden_size, num_classes),)

使用ReLU激活函数,在激活函数后都有一个Dropout。

重点是forward方法:

  def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:"""Args:a (torch.Tensor): input sequence a with shape (batch_size, a_seq_len)b (torch.Tensor): input sequence b with shape (batch_size, b_seq_len)Returns:torch.Tensor:"""# a (batch_size, a_seq_len, embedding_size)a_embed = self.embedding(a)# b (batch_size, b_seq_len, embedding_size)b_embed = self.embedding(b)# a_bar (batch_size, a_seq_len, 2 * hidden_size)a_bar, _ = self.lstm_a(a_embed)# b_bar (batch_size, b_seq_len, 2 * hidden_size)b_bar, _ = self.lstm_b(b_embed)# score (batch_size, a_seq_len, b_seq_len)score = torch.matmul(a_bar, b_bar.permute(0, 2, 1))# softmax (batch_size, a_seq_len, b_seq_len) x (batch_size, b_seq_len, 2 * hidden_size)# a_tilde (batch_size, a_seq_len, 2 * hidden_size)a_tilde = torch.matmul(torch.softmax(score, dim=2), b_bar)# permute (batch_size, b_seq_len, a_seq_len) x (batch_size, a_seq_len, 2 * hidden_size)# b_tilde (batch_size, b_seq_len, 2 * hidden_size)b_tilde = torch.matmul(torch.softmax(score, dim=1).permute(0, 2, 1), a_bar)# m_a (batch_size, a_seq_len, 8 * hidden_size)m_a = torch.cat([a_bar, a_tilde, a_bar - a_tilde, a_bar * a_tilde], dim=-1)# m_b (batch_size, b_seq_len, 8 * hidden_size)m_b = torch.cat([b_bar, b_tilde, b_bar - b_tilde, b_bar * b_tilde], dim=-1)# v_a (batch_size, a_seq_len, 2 * hidden_size)v_a, _ = self.lstm_v_a(m_a)# v_b (batch_size, b_seq_len, 2 * hidden_size)v_b, _ = self.lstm_v_b(m_b)# (batch_size, 2 * hidden_size)avg_a = torch.mean(v_a, dim=1)avg_b = torch.mean(v_b, dim=1)max_a, _ = torch.max(v_a, dim=1)max_b, _ = torch.max(v_b, dim=1)# (batch_size, 8 * hidden_size)v = torch.cat([avg_a, max_a, avg_b, max_b], dim=-1)return self.predict(v)

标注出每个向量的维度就挺好理解的。

首先分别为两个输入得到嵌入向量;

其次喂给各自的LSTM层,得到每个时间步的输出,注意由于是双向LSTM,因此最后的维度是2 * hidden_size

接着对它两计算注意力分数score (batch_size, a_seq_len, b_seq_len)

然后分别计算a对b和b对a的注意力,这里要注意softmaxdim的维度。在计算a的注意力输出时,是利用b每个输入的加权和,所以softmax(score, dim=2)b_seq_len维度上间求和;

然后是增强的局部推理,差、乘各种拼接,得到一个8 * hidden_size的维度,所以lstm_v_a的输入维度是8 * hidden_size

接下来就是对得到的a和b进行平均池化和最大池化,然后把它们拼接起来,也得到了8 * hidden_size的一个维度;

最后经过我们的预测层,多层前馈网络,进行了一些非线性变换后变成了输出维度大小,比较最后一个维度的值哪个大当成对哪个类的一个预测;

数据准备

和前面几篇几乎一样,这里直接贴代码:

from collections import defaultdict
from tqdm import tqdm
import numpy as np
import json
from torch.utils.data import Dataset
import pandas as pd
from typing import TupleUNK_TOKEN = "<UNK>"
PAD_TOKEN = "<PAD>"class Vocabulary:"""Class to process text and extract vocabulary for mapping"""def __init__(self, token_to_idx: dict = None, tokens: list[str] = None) -> None:"""Args:token_to_idx (dict, optional): a pre-existing map of tokens to indices. Defaults to None.tokens (list[str], optional): a list of unique tokens with no duplicates. Defaults to None."""assert any([tokens, token_to_idx]), "At least one of these parameters should be set as not None."if token_to_idx:self._token_to_idx = token_to_idxelse:self._token_to_idx = {}if PAD_TOKEN not in tokens:tokens = [PAD_TOKEN] + tokensfor idx, token in enumerate(tokens):self._token_to_idx[token] = idxself._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()}self.unk_index = self._token_to_idx[UNK_TOKEN]self.pad_index = self._token_to_idx[PAD_TOKEN]@classmethoddef build(cls,sentences: list[list[str]],min_freq: int = 2,reserved_tokens: list[str] = None,) -> "Vocabulary":"""Construct the Vocabulary from sentencesArgs:sentences (list[list[str]]): a list of tokenized sequencesmin_freq (int, optional): the minimum word frequency to be saved. Defaults to 2.reserved_tokens (list[str], optional): the reserved tokens to add into the Vocabulary. Defaults to None.Returns:Vocabulary: a Vocubulary instane"""token_freqs = defaultdict(int)for sentence in tqdm(sentences):for token in sentence:token_freqs[token] += 1unique_tokens = (reserved_tokens if reserved_tokens else []) + [UNK_TOKEN]unique_tokens += [tokenfor token, freq in token_freqs.items()if freq >= min_freq and token != UNK_TOKEN]return cls(tokens=unique_tokens)def __len__(self) -> int:return len(self._idx_to_token)def __getitem__(self, tokens: list[str] | str) -> list[int] | int:"""Retrieve the indices associated with the tokens or the index with the single tokenArgs:tokens (list[str] | str): a list of tokens or single tokenReturns:list[int] | int: the indices or the single index"""if not isinstance(tokens, (list, tuple)):return self._token_to_idx.get(tokens, self.unk_index)return [self.__getitem__(token) for token in tokens]def lookup_token(self, indices: list[int] | int) -> list[str] | str:"""Retrive the tokens associated with the indices or the token with the single indexArgs:indices (list[int] | int): a list of index or single indexReturns:list[str] | str: the corresponding tokens (or token)"""if not isinstance(indices, (list, tuple)):return self._idx_to_token[indices]return [self._idx_to_token[index] for index in indices]def to_serializable(self) -> dict:"""Returns a dictionary that can be serialized"""return {"token_to_idx": self._token_to_idx}@classmethoddef from_serializable(cls, contents: dict) -> "Vocabulary":"""Instantiates the Vocabulary from a serialized dictionaryArgs:contents (dict): a dictionary generated by `to_serializable`Returns:Vocabulary: the Vocabulary instance"""return cls(**contents)def __repr__(self):return f"<Vocabulary(size={len(self)})>"class TMVectorizer:"""The Vectorizer which vectorizes the Vocabulary"""def __init__(self, vocab: Vocabulary, max_len: int) -> None:"""Args:vocab (Vocabulary): maps characters to integersmax_len (int): the max length of the sequence in the dataset"""self.vocab = vocabself.max_len = max_lendef _vectorize(self, indices: list[int], vector_length: int = -1, padding_index: int = 0) -> np.ndarray:"""Vectorize the provided indicesArgs:indices (list[int]): a list of integers that represent a sequencevector_length (int, optional): an arugment for forcing the length of index vector. Defaults to -1.padding_index (int, optional): the padding index to use. Defaults to 0.Returns:np.ndarray: the vectorized index array"""if vector_length <= 0:vector_length = len(indices)vector = np.zeros(vector_length, dtype=np.int64)if len(indices) > vector_length:vector[:] = indices[:vector_length]else:vector[: len(indices)] = indicesvector[len(indices) :] = padding_indexreturn vectordef _get_indices(self, sentence: list[str]) -> list[int]:"""Return the vectorized sentenceArgs:sentence (list[str]): list of tokensReturns:indices (list[int]): list of integers representing the sentence"""return [self.vocab[token] for token in sentence]def vectorize(self, sentence: list[str], use_dataset_max_length: bool = True) -> np.ndarray:"""Return the vectorized sequenceArgs:sentence (list[str]): raw sentence from the datasetuse_dataset_max_length (bool): whether to use the global max vector lengthReturns:the vectorized sequence with padding"""vector_length = -1if use_dataset_max_length:vector_length = self.max_lenindices = self._get_indices(sentence)vector = self._vectorize(indices, vector_length=vector_length, padding_index=self.vocab.pad_index)return vector@classmethoddef from_serializable(cls, contents: dict) -> "TMVectorizer":"""Instantiates the TMVectorizer from a serialized dictionaryArgs:contents (dict): a dictionary generated by `to_serializable`Returns:TMVectorizer:"""vocab = Vocabulary.from_serializable(contents["vocab"])max_len = contents["max_len"]return cls(vocab=vocab, max_len=max_len)def to_serializable(self) -> dict:"""Returns a dictionary that can be serializedReturns:dict: a dict contains Vocabulary instance and max_len attribute"""return {"vocab": self.vocab.to_serializable(), "max_len": self.max_len}def save_vectorizer(self, filepath: str) -> None:"""Dump this TMVectorizer instance to fileArgs:filepath (str): the path to store the file"""with open(filepath, "w") as f:json.dump(self.to_serializable(), f)@classmethoddef load_vectorizer(cls, filepath: str) -> "TMVectorizer":"""Load TMVectorizer from a fileArgs:filepath (str): the path stored the fileReturns:TMVectorizer:"""with open(filepath) as f:return TMVectorizer.from_serializable(json.load(f))class TMDataset(Dataset):"""Dataset for text matching"""def __init__(self, text_df: pd.DataFrame, vectorizer: TMVectorizer) -> None:"""Args:text_df (pd.DataFrame): a DataFrame which contains the processed data examplesvectorizer (TMVectorizer): a TMVectorizer instance"""self.text_df = text_dfself._vectorizer = vectorizerdef __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray, int]:row = self.text_df.iloc[index]return (self._vectorizer.vectorize(row.sentence1),self._vectorizer.vectorize(row.sentence2),row.label,)def get_vectorizer(self) -> TMVectorizer:return self._vectorizerdef __len__(self) -> int:return len(self.text_df)

模型训练

定义辅助函数和指标:

def make_dirs(dirpath):if not os.path.exists(dirpath):os.makedirs(dirpath)def tokenize(sentence: str):return list(jieba.cut(sentence))def build_dataframe_from_csv(dataset_csv: str) -> pd.DataFrame:df = pd.read_csv(dataset_csv,sep="\t",header=None,names=["sentence1", "sentence2", "label"],)df.sentence1 = df.sentence1.apply(tokenize)df.sentence2 = df.sentence2.apply(tokenize)return dfdef metrics(y: torch.Tensor, y_pred: torch.Tensor) -> Tuple[float, float, float, float]:TP = ((y_pred == 1) & (y == 1)).sum().float()  # True PositiveTN = ((y_pred == 0) & (y == 0)).sum().float()  # True NegativeFN = ((y_pred == 0) & (y == 1)).sum().float()  # False NegatvieFP = ((y_pred == 1) & (y == 0)).sum().float()  # False Positivep = TP / (TP + FP).clamp(min=1e-8)  # Precisionr = TP / (TP + FN).clamp(min=1e-8)  # RecallF1 = 2 * r * p / (r + p).clamp(min=1e-8)  # F1 scoreacc = (TP + TN) / (TP + TN + FP + FN).clamp(min=1e-8)  # Accuraryreturn acc, p, r, F1

定义评估函数和训练函数:

def evaluate(data_iter: DataLoader, model: nn.Module
) -> Tuple[float, float, float, float]:y_list, y_pred_list = [], []model.eval()for x1, x2, y in tqdm(data_iter):x1 = x1.to(device).long()x2 = x2.to(device).long()y = torch.LongTensor(y).to(device)output = model(x1, x2)pred = torch.argmax(output, dim=1).long()y_pred_list.append(pred)y_list.append(y)y_pred = torch.cat(y_pred_list, 0)y = torch.cat(y_list, 0)acc, p, r, f1 = metrics(y, y_pred)return acc, p, r, f1def train(data_iter: DataLoader,model: nn.Module,criterion: nn.CrossEntropyLoss,optimizer: torch.optim.Optimizer,print_every: int = 500,verbose=True,
) -> None:model.train()for step, (x1, x2, y) in enumerate(tqdm(data_iter)):x1 = x1.to(device).long()x2 = x2.to(device).long()y = torch.LongTensor(y).to(device)output = model(x1, x2)loss = criterion(output, y)optimizer.zero_grad()loss.backward()optimizer.step()if verbose and (step + 1) % print_every == 0:pred = torch.argmax(output, dim=1).long()acc, p, r, f1 = metrics(y, pred)print(f" TRAIN iter={step+1} loss={loss.item():.6f} accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")

参数定义:

 args = Namespace(dataset_csv="text_matching/data/lcqmc/{}.txt",vectorizer_file="vectorizer.json",model_state_file="model.pth",save_dir=f"{os.path.dirname(__file__)}/model_storage",reload_model=False,cuda=True,learning_rate=4e-4,batch_size=128,num_epochs=10,max_len=50,embedding_dim=300,hidden_size=300,num_classes=2,lstm_dropout=0.8,dropout=0.5,min_freq=2,print_every=500,verbose=True,)

这个模型非常简单,但效果是非常不错的,可以作为一个很好的baseline。在训练过程中发现对训练集的准确率达到了100%,有点过拟合了,因此最后把lstm的dropout加大到0.8,最后看一下训练效果如何:

  make_dirs(args.save_dir)if args.cuda:device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")else:device = torch.device("cpu")print(f"Using device: {device}.")vectorizer_path = os.path.join(args.save_dir, args.vectorizer_file)train_df = build_dataframe_from_csv(args.dataset_csv.format("train"))test_df = build_dataframe_from_csv(args.dataset_csv.format("test"))dev_df = build_dataframe_from_csv(args.dataset_csv.format("dev"))if os.path.exists(vectorizer_path):print("Loading vectorizer file.")vectorizer = TMVectorizer.load_vectorizer(vectorizer_path)args.vocab_size = len(vectorizer.vocab)else:print("Creating a new Vectorizer.")train_sentences = train_df.sentence1.to_list() + train_df.sentence2.to_list()vocab = Vocabulary.build(train_sentences, args.min_freq)args.vocab_size = len(vocab)print(f"Builds vocabulary : {vocab}")vectorizer = TMVectorizer(vocab, args.max_len)vectorizer.save_vectorizer(vectorizer_path)train_dataset = TMDataset(train_df, vectorizer)test_dataset = TMDataset(test_df, vectorizer)dev_dataset = TMDataset(dev_df, vectorizer)train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)dev_data_loader = DataLoader(dev_dataset, batch_size=args.batch_size)test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size)print(f"Arguments : {args}")model = ESIM(args.vocab_size,args.embedding_dim,args.hidden_size,args.num_classes,args.lstm_dropout,args.dropout,)print(f"Model: {model}")model_saved_path = os.path.join(args.save_dir, args.model_state_file)if args.reload_model and os.path.exists(model_saved_path):model.load_state_dict(torch.load(args.model_saved_path))print("Reloaded model")else:print("New model")model = model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)criterion = nn.CrossEntropyLoss()for epoch in range(args.num_epochs):train(train_data_loader,model,criterion,optimizer,print_every=args.print_every,verbose=args.verbose,)print("Begin evalute on dev set.")with torch.no_grad():acc, p, r, f1 = evaluate(dev_data_loader, model)print(f"EVALUATE [{epoch+1}/{args.num_epochs}]  accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")model.eval()acc, p, r, f1 = evaluate(test_data_loader, model)print(f"TEST accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")
python .\text_matching\esim\train.py
Using device: cuda:0.
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache
Loading model cost 0.563 seconds.
Prefix dict has been built successfully.
Loading vectorizer file.
Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', save_dir='D:\\workspace\\nlp-in-action\\text_matching\\esim/model_storage', reload_model=False, cuda=True, learning_rate=0.0004, batch_size=128, num_epochs=10, max_len=50, embedding_dim=300, hidden_size=300, num_classes=2, lstm_dropout=0.8, dropout=0.5, min_freq=2, print_every=500, verbose=True, vocab_size=35925)      
D:\workspace\nlp-in-action\.venv\lib\site-packages\torch\nn\modules\rnn.py:67: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.8 and num_layers=1warnings.warn("dropout option adds dropout after all but last "
Model: ESIM((embedding): Embedding(35925, 300)(lstm_a): LSTM(300, 300, batch_first=True, dropout=0.8, bidirectional=True)(lstm_b): LSTM(300, 300, batch_first=True, dropout=0.8, bidirectional=True)(lstm_v_a): LSTM(2400, 300, batch_first=True, dropout=0.8, bidirectional=True)(lstm_v_b): LSTM(2400, 300, batch_first=True, dropout=0.8, bidirectional=True)(predict): Sequential((0): Linear(in_features=2400, out_features=600, bias=True)(1): ReLU()(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=600, out_features=300, bias=True)(4): ReLU()(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=300, out_features=2, bias=True))
)
New model27%|█████████████████████████████████████████████████▋                                                                                                                                        | 499/1866 [01:33<04:13,  5.40it/s] 
TRAIN iter=500 loss=0.500601 accuracy=0.750 precision=0.714 recal=0.846 f1 score=0.774654%|███████████████████████████████████████████████████████████████████████████████████████████████████▌                                                                                      | 999/1866 [03:04<02:40,  5.41it/s] 
TRAIN iter=1000 loss=0.250350 accuracy=0.883 precision=0.907 recal=0.895 f1 score=0.900780%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌                                    | 1499/1866 [04:35<01:07,  5.43it/s] 
TRAIN iter=1500 loss=0.311494 accuracy=0.844 precision=0.868 recal=0.868 f1 score=0.8684
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [05:42<00:00,  5.45it/s] 
Begin evalute on dev set.
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:04<00:00, 17.10it/s] 
EVALUATE [1/10]  accuracy=0.771 precision=0.788 recal=0.741 f1 score=0.7637
...
TRAIN iter=500 loss=0.005086 accuracy=1.000 precision=1.000 recal=1.000 f1 score=1.0000
...
EVALUATE [10/10]  accuracy=0.815 precision=0.807 recal=0.829 f1 score=0.8178
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:05<00:00, 17.38it/s] 
TEST accuracy=0.817 precision=0.771 recal=0.903 f1 score=0.8318

可以看到,训练集上的损失第一次降到了0.005级别,准确率甚至达到了100%,但最终在测试集上的准确率相比训练集还是逊色了一些,只有81.7%,不过相比前面几个模型已经很不错了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/109573.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧工地:实现作业区域安全管控

智慧工地是围绕工程现场人、机、料、法、环及施工过程中质量、安全、进度、成本等各项数据满足工地多角色、多视角的有效监管,实现工程建设管理的降本增效。 建设工程安全文明施工与质量提升,全方位的监测施工人员、各类器械设备、消防安全隐患&#xff0c;并提前对风险进行预警…

Linux vim的常见基本操作

目录 vim是一款多模式的编辑器 命令模式下&#xff1a; 用小写英文字母「h」、「j」、「k」、「l」&#xff0c;分别控制光标左、下、上、右移一格 gg&#xff1a;定位到代码第一行 nshiftg 定位到任意一行/最后一行 「 $ 」&#xff1a;移动到光标所在行的结尾 「 ^ 」&…

flutter run长时间卡在Running Gradle task “assembleDebug“问题解决

1.下载离线gradle, 在android>>gradle>>wrapper 中找到gradle-wrappper.properties 可以看到要下载的gradle的版本 下载官方链接,更改url的版本号就好 Gradle | Thank you for downloading Gradle! 在android>>gradle>>wrapper 中找到gradle-wra…

UG\NX二次开发 二维向量相加

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 简介: UG\NX二次开发 二维向量相加 效果: 代码: #include "me.hpp"void doIt() {const double vec1[2] = { 1.0,2.0 };const double vec2[2] = { 2.0,2.…

EasyExcel入门(最简单的读)

官网&#xff1a;EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel (alibaba.com) 因为暂时项目没有用到&#xff0c;所以不急&#xff0c;知道了这个技术。就想着学着用一下&#xff01; 最简单的读 先看官方文档给的用法和解释&#xff01;&#xff01;&#xff01…

30天入门Python(基础篇)——第2天:Python安装(保姆级)与IDE的认识与选择+详细安装教程

文章目录 专栏导读上一节课回顾1、Python解释器的安装查看各个版本的Python解释器①、ok,双击安装②、这里我们选择【自定义】安装&#xff0c; 下面的【将Python添加在环境变量】大家一定要打个勾③、点击【Next】进行下一步④、这里不建议安装在C盘, 点击【Browse】我在F盘创…

【DevOps系列】Docker数据卷(volume)详解

【DevOps系列】Docker数据卷&#xff08;volume&#xff09;详解 文章目录 【DevOps系列】Docker数据卷&#xff08;volume&#xff09;详解一、概述二、数据卷三、为什么使用数据卷volume数据卷的作用&#xff1a;数据卷的特点&#xff1a; 四、数据卷volume基本操作4.1 创建数…

小程序中如何查看指定会员的付款记录

在小程序中&#xff0c;我们可以通过一些简单的步骤来查看指定会员的付款记录。下面是具体的操作流程&#xff1a; 1. 找到指定的会员卡。在管理员后台->会员管理处&#xff0c;找到需要查看付款记录的会员卡。也支持对会员卡按卡号、手机号和等级进行搜索。 2. 查看会员卡…

测试平台前端部署

这里写目录标题 一、前端代码打包1、打包命令2、打包完成后,将dist文件夹拷贝到nginx文件夹中3、重新编写default.conf4、将之前启动的容器进行停止并且删除,再重新创建容器5、制作Dockerfile二、编写Dockerfile一、前端代码打包 1、打包命令 npm run build2、打包完成后,…

【C语言】指针和数组笔试题解析

指针是C语言的灵魂&#xff0c;他的玩法多种多样&#xff0c;这篇文章带来指针的笔试题详解&#xff0c;可以帮助我们更好的理解与巩固指针的知识 目录 预备知识&#xff1a;题目&#xff1a; 题目比较多&#xff0c;但切记戒骄戒躁&#xff0c;保持空杯心态&#xff0c;相信看…

高级深入--day23

处理给规范的文字 处理的大多数文字最好都是比较干净、格式规范的。格式规范的文字通常可以满足一些需求&#xff0c;通常格式规范的文字具有以下特点: 使用一个标准字体(不包含手写体、草书,或者十分“花哨的”字体)即使被复印或拍照&#xff0c;字体还是很清晰&#xff0c;…

OpenCV_CUDA_VS编译安装

一、OpenCV 我这里是下载的OpenCV4.5.4&#xff0c;但是不知道到在vs里面build时一直报错&#xff0c;后面换了4.7.0的版本测试&#xff0c;安装成功。 Release OpenCV 4.5.4 opencv/opencv GitHub 这个里面有官方预编译好的OpenCV库&#xff0c;可以直接食用。 扩展包&am…