徐亦达机器学习:Kalman Filter 卡尔曼滤波笔记 (一)

在这里插入图片描述

P ( x t P(x_t P(xt| x t − 1 ) x_{t-1}) xt1) P ( y t P(y_t P(yt| x t ) x_t) xt) P ( x 1 ) P(x_1) P(x1)
Discrete State DM A X t − 1 , X t A_{X_{t-1},X_t} AXt1,XtAny π \pi π
Linear Gassian Kalman DM N ( A X t − 1 + B , Q ) N(AX_{t-1}+B,Q) N(AXt1+B,Q) N ( H X t + C , R ) N(HX_t+C,R) N(HXt+C,R) N ( μ 0 , ϵ 0 ) N(\mu_0,\epsilon_0) N(μ0,ϵ0)
No-Linear NoGaussian DM f ( x t − 1 ) f(x_{t-1}) f(xt1) g ( y t ) g(y_t) g(yt) f ( x 1 ) f(x_1) f(x1)

{ P ( y 1 , . . . , y t ) − − e v a l u a t i o n a r g m e n t θ log ⁡ P ( y 1 , . . . , y t ∣ θ ) − − p a r a m e t e r l e a r n i n g P ( x 1 , . . . , x t ∣ y 1 , . . . , y t ) − s t a t e d e c o d i n g P ( x t ∣ y 1 , . . , y t ) − f i l t e r i n g \left\{ \begin{aligned} P(y_1,...,y_t)--evaluation\\ argment \theta \log{P(y1,...,y_t|\theta)}--parameter learning \\ P(x_1,...,x_t|y_1,...,y_t)-state decoding \\ P(x_t | y_1,..,y_t)-filtering \end{aligned} \right. P(y1,...,yt)evaluationargmenlogP(y1,...,ytθ)parameterlearningP(x1,...,xty1,...,yt)statedecodingP(xty1,..,yt)filtering
在这里插入图片描述

线性高斯噪声的动态模型

在这里插入图片描述

P ( x t ∣ y 1 , . . . , y t ) P(x_t|y_1,...,y_t) P(xty1,...,yt)
假设转移概率是 P ( x t ∣ X t − 1 ) = N ( A X t − 1 + B , Q ) P(x_t|X_{t-1})= N(AX_{t-1}+B,Q) P(xtXt1)=N(AXt1+B,Q)
X t = A X t − 1 + B + ω X_t = AX_{t-1}+B+\omega Xt=AXt1+B+ω , ω ∼ N ( 0 , Q ) \omega \sim N(0,Q) ωN(0,Q)

measurement probility
P ( y t ∣ x t ) = N ( H X t + C , R ) P(y_t|x_t) = N(HX_t+C,R) P(ytxt)=N(HXt+C,R)
y t = H X t + C + v y_t = HX_t+C+v yt=HXt+C+v
v ∼ N ( 0 , R ) v \sim N(0,R) vN(0,R)
以下都是参数。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

filter公式推导

在这里插入图片描述
在这里插入图片描述
HMM模型,当隐变量确定的时候,观测就变成独立的了。
在这里插入图片描述

  • 卡尔曼滤波,当t = 1的时候,我们就知道 P ( x 1 ∣ y 1 ) ∼ N ( u ^ 1 , σ ^ 1 ) P(x_1|y_1) \sim N(\hat u_1,\hat \sigma_1) P(x1y1)N(u^1,σ^1)
  • t = 2的时候, P ( x 2 ∣ y 2 ) ∼ N ( u ‾ 2 , σ ‾ 2 ) P(x_2|y_2) \sim N(\overline u_2,\overline \sigma_2) P(x2y2)N(u2,σ2)
    在这里插入图片描述

个人理解

  • 卡尔曼滤波可以理解为滤波器的一种,用数学表达就是用观测量 y 1 , y 2 , y 3 . . . , y t y_1,y_2,y_3...,y_t y1,y2,y3...,yt来获得t时刻的估计量 x t x_t xt,数学公式为
    P ( x t ∣ y 1 , . . . , y t ) P(x_t|y_1,...,y_t) P(xty1,...,yt)正比与 P ( x t , y 1 , . . . , y t ) P(x_t,y_1,...,y_t) P(xt,y1,...,yt)可以理解为前置条件 y 1 , . . . , y t y_1,...,y_t y1,...,yt发生的条件下有发生 x t x_t xt的概率与两类事件同时发生的概率是成正比的。可以简单理解为 P ( A ∣ B ) P(A|B) P(AB) P ( A , B ) P(A,B) P(A,B)成正比。
  • 那么得出 P ( x t ∣ y 1 , . . . , y t ) ∝ P ( x t , y 1 , . . . , y t ) ∝ P ( y t ∣ x t , y 1 , . . . , y t − 1 ) ∗ P ( x t ∣ y 1 , . . . , y t − 1 ) P(x_t|y_1,...,y_t) \propto P(x_t,y_1,...,y_t) \propto P(y_t|x_t,y_1,...,y_{t-1}) * P(x_t|y_1,...,y_{t-1}) P(xty1,...,yt)P(xt,y1,...,yt)P(ytxt,y1,...,yt1)P(xty1,...,yt1)
  • 有HMM可以得知, P ( y t ) P(y_t) P(yt)发生的概率是只跟 x t x_t xt相关,因此 P ( y t ∣ x t , y 1 , . . . , y t − 1 ) = P ( y t ∣ x t ) P(y_t|x_t,y_1,...,y_t-1) = P(y_t|x_t) P(ytxt,y1,...,yt1)=P(ytxt),而 x t x_t xt的估计量,是通过上一次观测获得, x t x_t xt y 1 , . . . , y t − 1 y_1,...,y_{t-1} y1,...,yt1相关。
  • 那么得出预测为 P ( x t ∣ y 1 , . . . , y t − 1 ) P(x_t|y_1,...,y_{t-1}) P(xty1,...,yt1),前t-1时刻的观测值估计下一刻t的状态。
  • x t x_t xt看为常量,将 x t − 1 x_{t-1} xt1看为变量,那么就得到了预测公式的推导公式为 P ( x t ∣ y 1 , . . . , y t − 1 ) = ∫ d ( x t − 1 ) P ( x t , x t − 1 ∣ y 1 , . . . , y t ) d x t − 1 ∝ ∫ x t − 1 P ( x t ∣ x t − 1 ) P ( x t − 1 ∣ y 1 , . . . , y t − 1 ) d ( x t − 1 ) P(x_t|y_1,...,y_{t-1})=\int_{d(x_{t-1})}{P(x_t,x_{t-1}|y_1,...,y_t)dx_{t-1}} \propto \int_{x_{t-1}}P(x_t|x_{t-1})P(x_{t-1}|y_1,...,y_{t-1})d(x_{t-1}) P(xty1,...,yt1)=d(xt1)P(xt,xt1y1,...,yt)dxt1xt1P(xtxt1)P(xt1y1,...,yt1)d(xt1)
    在这里插入图片描述

总结

  • 预测:不知道当前时刻的观测,用上一时刻观测与预测当前时刻的状态
    P ( x t ∣ y 1 , . . . , y t − 1 ) = ∫ P ( x t ∣ x t − 1 ) P ( x t − 1 ∣ y 1 , . . . , y t − 1 ) P(x_t|y_1,...,y_{t-1})= \int P(x_t|x_{t-1})P(x_{t-1}|y_1,...,y_{t-1}) P(xty1,...,yt1)=P(xtxt1)P(xt1y1,...,yt1)
  • 更新:已经知道当前时刻的观测,用当前的观测更新当前可是的状态
    P ( x t ∣ y 1 , . . . , y t ) = P ( y t ∣ x t ) P ( x t ∣ y 1 , . . . , y t − 1 ) P(x_t|y_1,...,y_t)=P(y_t|x_t)P(x_t|y_1,...,y_{t-1}) P(xty1,...,yt)=P(ytxt)P(xty1,...,yt1)
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

结论

  • x t ∣ y 1 , . . . , y t − 1 = A E [ x t − 1 ] + A Δ X t − 1 + ω x_t|y_1,...,y_{t-1}=AE[x_{t-1}]+A\Delta X_{t-1}+\omega xty1,...,yt1=AE[xt1]+AΔXt1+ω = E [ x t ] + Δ x t =E[x_t]+\Delta x_t =E[xt]+Δxt
  • y t ∣ y 1 , . . . y t − 1 = H A E [ X t − 1 ] + H A Δ x t − 1 + H ω + v = E [ y t ] + Δ y t y_t|y_1,...y_{t-1} = HAE[X_{t-1}]+HA \Delta x_{t-1}+H\omega + v = E[y_t] + \Delta y_t yty1,...yt1=HAE[Xt1]+HAΔxt1+Hω+v=E[yt]+Δyt
  • P ( x t ∣ y 1 , . . . , y t ) = N ( A E [ x t − 1 ] , E [ ( Δ x ) ( Δ x ) T ] ) P(x_t|y_1,...,y_t) = N(AE[x_{t-1}],E[(\Delta x)(\Delta x)^T]) P(xty1,...,yt)=N(AE[xt1],E[(Δx)(Δx)T])
  • P ( y t ∣ y 1 , . . . , y t − 1 ) = N ( H A E [ X t − 1 ] , E [ ( Δ y ) ( Δ y ) T ] ) P(y_t|y1,...,y_{t-1}) = N(HAE[X_{t-1}],E[(\Delta y)(\Delta y)^T]) P(yty1,...,yt1)=N(HAE[Xt1],E[(Δy)(Δy)T])
    以上为边缘分布
    P ( x t , y t ∣ y 1 , . . . , y t − 1 ) P(x_t,y_t|y_1,...,y_{t-1}) P(xt,yty1,...,yt1)
    在这里插入图片描述

非线性非高斯噪声的动态模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/109589.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海康威视热成像实时测温java - 23版

在20年写了一篇实时测温demo博客,看来帮了不少人。今天刚好又有需求,需要采温。也碰到了不少问题,特此记录 1、环境 摄像头:海康 型号:DS-2TD2528T-7/Q 序列:EA0406775 服务器:winServer J…

计算机丢失mfc140u.dll怎么办,mfc140u.dll丢失的解决方法分享

随着科技的飞速发展,计算机已经成为了人们日常生活和工作中不可或缺的工具。然而,在使用计算机的过程中,用户可能会遇到各种问题,其中计算机丢失 mfc140u.dll 无法运行的问题就是一个比较常见的困扰。小编将从以下几个方面对这个问…

为何红黑树在B/B+树之上仍然占据重要地位?

为何红黑树在B/B树之上仍然占据重要地位? 引言二、红黑树和B/B树的基本原理2.1、红黑树的特点和性质2.2、B/B树的特点和性质2.3、红黑树和B/B树的比较 三、B/B树相对于红黑树的优势四、红黑树仍然占据重要地位的原因总结 博主简介 💡一个热爱分享高性能服…

SQL 2008 R2 和vCenter 5.1安装步骤与AQ

准备情况: Windows 2008 r2 sp1 64bit操作系统 Sql 2008 完整版安装包(名称:SQLFULL_CHS.iso 安装完成会安装managment) vCenter完整版安装包(名称:VMware-VIMSetupall-5.1.0-799735.iso) …

string的使用和模拟实现

💓博主个人主页:不是笨小孩👀 ⏩专栏分类:数据结构与算法👀 C👀 刷题专栏👀 C语言👀 🚚代码仓库:笨小孩的代码库👀 ⏩社区:不是笨小孩👀 🌹欢迎大…

电商ERP供应链模块解析——采购+入库流程

电商ERP供应链模块包括采购—仓储—物流 3 个模块,本文对采购—仓储中的采购入库流程的系统设计做一个概述。 其中入库部分,相较于 WMS,ERP 系统更注重数据在上下游流通,所以更注重记录结果;WMS 更注重提升仓库内作业…

大模型赛道如何实现华丽的弯道超车

导读:Alluxio作为一款强大的分布式统一大数据虚拟文件系统,已经在众多领域展现出了其卓越的应用价值,并且为AI/ML训练赋能提供了一个全新的解决方案。 在人工智能(AI)和机器学习(ML)领域&#x…

我的C#基础

using System; namespace HelloWorldApplication }TOC 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。 为帮助您在CSDN创作的文章获得更多曝光和关注,我们为您提供了专属福利: 已注册且未在CSDN平台发布过…

使用SSH地址拉取远程仓库代码报下面的错误

说明:配置了SSH秘钥后,使用SSH地址克隆代码,依旧无法拉取代码,提示下面这个信息。 Their offer:ssh-rsa,ssh-dss fatal:Could not read from remote repository. Please make sure you have the…

【C++】详解std::mutex

2023年9月11日,周一中午开始 2023年9月11日,周一晚上23:25写完 目录 概述头文件std::mutex类的成员类型方法没有std::mutex会产生什么问题问题一:数据竞争问题二:不一致lock和unlock死锁 概述 std::mutex是C标准库中…

PostgreSQL 事务并发锁

文章目录 PostgreSQL 事务大家都知道的 ACID事务的基本使用保存点 PostgreSQL 并发并发问题MVCC PostgreSQL 锁机制表锁行锁 总结 PostgreSQL 事务 大家都知道的 ACID 在日常操作中,对于一组相关操作,通常要求要么都成功,要么都失败。在关系…

ESIM实战文本匹配

引言 今天我们来实现ESIM文本匹配,这是一个典型的交互型文本匹配方式,也是近期第一个测试集准确率超过80%的模型。 我们来看下是如何实现的。 模型架构 我们主要实现左边的ESIM网络。 从下往上看,分别是 输入编码层(Input Ecoding) 对前…