时序预测 | MATLAB实现NGO-BiLSTM北方苍鹰算法优化双向长短期记忆网络时间序列预测

时序预测 | MATLAB实现NGO-BiLSTM北方苍鹰算法优化双向长短期记忆网络时间序列预测

目录

    • 时序预测 | MATLAB实现NGO-BiLSTM北方苍鹰算法优化双向长短期记忆网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

时序预测 | MATLAB实现NGO-BiLSTM北方苍鹰算法优化双向长短期记忆网络时间序列预测(完整源码和数据)
1.data为数据集,单变量时间序列。
2.MainNGOBiLSTMTS.m为程序主文件,其他为函数文件无需运行。
3.命令窗口输出MAE、MSE、RMSEP、RPD和MAPE,可在下载区获取数据和程序内容。
4.北方苍鹰算法优化参数为学习率,隐藏层节点个数,正则化参数。
注意程序和数据放在一个文件夹,运行环境为Matlab2018及以上.

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现NGO-BiLSTM北方苍鹰算法优化双向长短期记忆网络时间序列预测
%% -------------优化----------------------
% 参数设置
SearchAgents = 5;  % 种群数量 
Max_iterations =10; % 迭代次数  lowerbound = [1e-10 0.0001 10 ];%三个参数的下限
upperbound = [1e-2 0.002 400 ];%三个参数的上限
dim = 3;%数量,即要优化的超参数个数fobj = @(x)fun(x,inputn_train,outputn_train,outputps);   %调用函数fun计算适应度函数值
%% 赋值; 
[Best_score,Best_pos,Convergence_curve]=NGO(SearchAgents,Max_iterations,lowerbound,upperbound,dim,fobj)    %% 北方苍鹰算法%得到最优参数
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
InitialLearnRate = Best_pos(1,2); % 最佳初始学习率
NumOfUnits  =abs(round( Best_pos(1,3)));   % 最佳隐藏层节点数%% ------------------利用优化参数重新训练LSTM并预测----------------------------
% 数据输入x的特征维度
inputSize  = size(inputn_train,1);
% 数据输出y的维度
outputSize = size(outputn_train,1);%  设置网络结构
layers = [ ...sequenceInputLayer(inputSize)     %输入层,参数是输入特征维数dropoutLayer(0.2)                  %权重丢失率fullyConnectedLayer(outputSize)   %全连接层,也就是输出的维数regressionLayer];    %回归层,该参数说明是在进行回归问题,而不是分类问题opts = trainingOptions('adam', ...      %优化算法'MaxEpochs',100, ...                %最大迭代次数'GradientThreshold',1,...           %梯度阈值,防止梯度爆炸'ExecutionEnvironment','cpu',...   %对于大型数据集合、长序列或大型网络,在 GPU 上进行预测计算通常比在 CPU 上快。其他情况下,在 CPU 上进行预测计算通常更快。'InitialLearnRate',InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',120, ...'LearnRateDropFactor',0.2, ...   % 指定初始学习率 0.005,在 100 轮训练后通过乘以因子 0.2 来降低学习率。'L2Regularization', L2Regularization, ...       % 正则化参数'Verbose',false, ...         %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。'Plots','training-progress'...   %构建曲线图,   若将'training-progress'替换为'none',则不画出曲线);   % 'MiniBatchSize',outputSize*30, ...%  训练
LSTMnet = trainNetwork(inputn_train ,outputn_train ,layers,opts);    %  网络训练%  预测
[LSTMnet,LSTMoutputr_train]= predictAndUpdateState(LSTMnet,inputn_train);   % 训练样本拟合值
LSTMoutput_train = mapminmax('reverse',LSTMoutputr_train,outputps);  % 数据反归一化%网络测试输出
LSTMoutputr_test= [];
end
LSTMoutput_test= mapminmax('reverse',LSTMoutputr_test,outputps);   %反归一化
toc%% -----------------预测结果-------------------------
%  数据格式转换
LSTM_train =LSTMoutput_train';
LSTM_test = LSTMoutput_test';train_DATA=output_train';    %训练样本标签
test_DATA= output_test'; %测试样本标签%%  绘图
%%  均方根误差 RMSE
error1 = sqrt(sum((LSTM_train - train_DATA).^2)./M);
error2 = sqrt(sum((LSTM_test- test_DATA).^2)./N);
%%
%决定系数
R1 = 1 - norm(train_DATA - LSTM_train)^2 / norm(train_DATA - mean(train_DATA))^2;
R2 = 1 - norm(test_DATA -  LSTM_test)^2 / norm(test_DATA -  mean(test_DATA ))^2;%%
%均方误差 MSE
mse1 = sum((LSTM_train - train_DATA).^2)./M;
mse2 = sum((LSTM_test - test_DATA).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(LSTM_train-train_DATA);
RPD1=std(train_DATA)/SE1;SE=std(LSTM_test-test_DATA);
RPD2=std(test_DATA)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(train_DATA - LSTM_train));
MAE2 = mean(abs(test_DATA - LSTM_test));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((train_DATA - LSTM_train)./train_DATA));
MAPE2 = mean(abs((test_DATA - LSTM_test)./test_DATA));

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/110226.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法|虚拟头节点|链表】移除链表元素

Leetcode203 移除链表元素 题目描述: 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val 6 输出&#xf…

应用在儿童平板防蓝光中的LED防蓝光灯珠

现在电子产品多,手机、平板电脑、电子书等等,由于蓝光有害眼睛健康,于是市场上有很多防蓝光的眼镜、防蓝光的手机膜、防蓝光的平板,这些材料和设备到底有没有用?如何正确预防蓝光危害呢? 我们现在所用的灯…

为什么AirtestIDE的selenium Window突然无法检索控件了?

1. 前言 最近有很多朋友跟我们反馈,为什么1.2.15版本的IDE没办法做网页元素检索了,是不是我们不支持selenium了之类的。 测试后发现,目前版本确实存在这个问题,原因是Chrome113.0.5672.127(最新)版本过高,AirtestIDE…

Python中的缓存库

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 缓存是一种可以存储数据以便快速访问的存储器。 它是一种小型的、快速的存储器,用于保存经常访问的数据。 缓存是必不可少的,因为它可以帮助提高系统的性能,减少系统访问缓慢的主存储器的…

苹果电脑Mac系统运行速度又卡又慢是怎么回事?

通常大家处理Mac运行速度慢的方法不是重启就是清空废纸篓,但是这两种方法对于Mac提速性能的效果是微之甚微的,想要彻底解决Mac运行速度慢,你应该试试一下三种方法~ 1、清理磁盘空间 硬盘空间过少是Mac运行变慢很大的一个因素,各…

浅析目标检测入门算法:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4

本文致力于让读者对以下这些模型的创新点和设计思想有一个大体的认识,从而知晓YOLOv1到YOLOv4的发展源流和历史演进,进而对目标检测技术有更为宏观和深入的认知。本文讲解的模型包括:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4…

MySQL数据库管理及数据库基本操作

目录 1 MySQL数据库基本操作 1.1 SQL分类 1.2 SQL语言规范 1.3 数据库对象和命名 1.4 SQL语句分类 2 管理MySQL数据库 2.1 查看数据库结构 2.1.1 查看当前服务器中的数据库 2.1.2 查看数据库中包含的表 2.1.3 查看表的结构(字段) 2.2 数据类型…

面试题五:computed的使用

题记 大部分的工作中使用computed的频次很低的,所以今天拿出来一文对于computed进行详细的介绍,因为Vue的灵魂之一就是computed。 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护…

4.后端·新建子模块与开发(传统模式)

文章目录 学习资料新建子模块与各层查询entity的列表entitymapper层service层controller层 测试 学习资料 https://www.bilibili.com/video/BV13g411Y7GS?p8&spm_id_frompageDriver&vd_sourceed09a620bf87401694f763818a31c91e b站的学习视频 新建子模块与各层 在r…

redis的安装、基础命令学习、常用数据结构

文章目录 前言一、Redis安装1.Ubuntu下安装(1)切换到root用户下(2)使用apt安装redis5(3)为了使redis支持远程连接,修改以下地方(4)验证安装是否成功 2.Centos7下安装&…

列表对象复制属性到另一个列表对象 从List<Object>另一个List<Object>

目录 事件起因环境和工具解决办法结束语 事件起因 在写一个市级的项目时,遇到了一个问题,这个项目涉及的数据内容非常大,光是数据库文件的大小就已经达到了12G,数据的规模大致是在百万级的,光是我这次参与处理的数据就…

#循循渐进学51单片机#定时器与数码管#not.4

1、熟练掌握单片机定时器的原理和应用方法。 1)时钟周期:单片机时序中的最小单位,具体计算的方法就是时钟源分之一。 2)机器周期:我们的单片机完成一个操作的最短时间。 3)定时器:打开定时器“储存寄存器…