大模型赛道如何实现华丽的弯道超车【赠书活动|第十期《分布式统一大数据虚拟文件系统 Alluxio原理、技术与实践》】

文章目录

  • 01 具备对海量小文件的频繁数据访问的 I/O 效率
  • 02 提高 GPU 利用率,降低成本并提高投资回报率
  • 03 支持各种存储系统的原生接口
  • 04 支持单云、混合云和多云部署
  • 01 通过数据抽象化统一数据孤岛
  • 02 通过分布式缓存实现数据本地性
  • 03 优化整个工作流的数据共享
  • 04 通过并行执行数据预加载、缓存和训练来编排数据工作流
  • 直播预告
    • 直播主题
    • 直播时间
    • 直播观看方式
  • 抽奖方式

在人工智能(AI)和机器学习(ML)领域,数据驱动的决策和模型训练已成为现代应用和研究的核心。伴随大模型技术迅猛发展,模型训练所需数据的规模不断扩大,数据的处理、存储和传输都面临着巨大的挑战,传统的存储和处理方式已经无法满足实时性和性能需求。同时,不同计算框架之间的数据孤岛问题也制约了数据的有效利用。如何在激烈竞争的大模型赛道脱颖而出,实现华丽的弯道超车,成为了众多参赛选手投入巨大人力、物力不断探索的方向。

而这其中,模型训练成为重中之重。当我们进行模型训练时,需要高效的数据平台架构快速生成分析结果,而模型训练在很大程度上依赖于大型数据集。执行所有模型训练的第一步都是将训练数据从存储输送到计算引擎的集群,而数据工作流的效率会大大影响模型训练的效率。在现实场景中,AI/ML 模型训练任务对数据平台常常有以下几个需求:

01 具备对海量小文件的频繁数据访问的 I/O 效率

AI/ML 工作流不仅包含模型训练和推理,还包括前期的数据加载和预处理步骤,尤其是前期数据处理对整个工作流都有很大影响。与传统的数据分析应用相比,AI/ML 工作负载在数据加载和预处理阶段往往对海量小文件有较频繁的 I/O 请求。因此,数据平台需要提供更高的 I/O 效率,从而更好地为工作流提速。

02 提高 GPU 利用率,降低成本并提高投资回报率

机器学习模型训练是计算密集型的,需要消耗大量的 GPU 资源,从而快速准确地处理数据。由于 GPU 价格昂贵,因此优化 GPU 的利用率十分重要。这种情况下,I/O 就成为了瓶颈——工作负载受制于 GPU 的数据供给速度,而不是GPU 执行训练计算的速度。数据平台需要达到高吞吐量和低延迟,让 GPU 集群完全饱和,从而降低成本。

03 支持各种存储系统的原生接口

随着数据量的不断增长,企业很难只使用单一存储系统。不同业务部门会使用各类存储,包括本地分布式存储系统(HDFS和Ceph)和云存储(AWS S3,Azure Blob Store,Google 云存储等)。为了实现高效的模型训练,必须能够访问存储于不同环境中的所有训练数据,用户数据访问的接口最好是原生的。

04 支持单云、混合云和多云部署

除了支持不同的存储系统外,数据平台还需要支持不同的部署模式。随着数据量的增长,云存储成为普遍选择,它可扩展性高,成本低且易于使用。企业希望不受限制地实现单云、混合云和多云部署,实现灵活和开放的模型训练。另外,计算与存储分离的趋势也越来越明显,这会造成远程访问存储系统,这种情况下数据需要通过网络传输,带来性能上的挑战。数据平台需要满足在跨异构环境访问数据时也能达到高性能的要求。

综上,AI/ML 工作负载要求能在各种类型的异构环境中以低成本快速访问大量数据。企业需要不断优化升级数据平台,确保模型训练的工作负载在能够有效地访问数据,保持高吞吐量和高 GPU 利用率 。

在这里插入图片描述

Alluxio作为一款强大的分布式统一大数据虚拟文件系统,已经在众多领域展现出了其卓越的应用价值,并且为AI/ML训练赋能提供了一个全新的解决方案,其核心密码有四个方面组成:

01 通过数据抽象化统一数据孤岛

Alluxio作为数据抽象层,可以做到数据无缝访问而不拷贝和移动数据,无论是在本地还是在云上的数据都留在原地。通过Alluxio,数据被抽象化从而呈现统一的视图,大大降低数据收集阶段的复杂性。

由于Alluxio已经实现与存储系统的集成,机器学习框架只需与Alluxio交互即可从其连接的任何存储中访问数据。因此,我们可以利用来自任何数据源的数据进行训练,提高模型训练质量。在无需将数据手动移动到某一集中的数据源的情况下,包括Spark、Presto、PyTorch和TensorFlow在内所有的计算框架都可以访问数据,不必担心数据的存放位置。

02 通过分布式缓存实现数据本地性

Alluxio的分布式缓存,让数据均匀地分布在集群中,而不是将整个数据集复制到每台机器上,如图1所示。当训练数据集的大小远大于单个节点的存储容量时,分布式缓存尤其有用,而当数据位于远端存储时,分布式缓存会把数据缓存在本地,有利于数据访问。此外,由于在访问数据时不产生网络I/O,机器学习训练速度更快、更高效。

Image

图1 分布式缓存

如上图所示,对象存储中存有全部训练数据,两个文件(/path1/file1和/path2/file2)代表数据集。我们不在每台训练节点上存储所有文件块,而是将文件块分布式地存储在多台机器上。为了防止数据丢失和提高读取并发性,每个块可以同时存储在多个服务器上。

03 优化整个工作流的数据共享

在模型训练工作中,无论是在单个作业还是不同作业之间,数据读取和写入都有很大程度的重叠。Alluxio可以让计算框架访问之前已经缓存的数据,供下一步的工作负载进行读取和写入,如图2所示。比如在数据准备阶段使用Spark进行ETL数据处理,那么数据共享可以确保输出数据被缓存,供后续阶段使用。通过数据共享,整个数据工作流都可以获得更好的端到端性能。

Image

图2 通过Alluxio在工作流间传递数据

04 通过并行执行数据预加载、缓存和训练来编排数据工作流

Alluxio通过实现预加载和按需缓存来缩短模型训练的时间。如图3所示,通过数据缓存从数据源加载数据可以与实际训练任务并行执行。因此,训练在访问数据时将得益于高数据吞吐量,不必等待数据全部缓存完毕才开始训练。

Image

图3 Alluxio数据加载提升GPU利用率

虽然一开始会出现I/O延迟,但随着越来越多的数据被加载到缓存中,I/O等待时间会减少。在本方案中,所有环节,包括训练数据集从对象存储加载到训练集群、数据缓存、按需加载用于训练的数据以及训练作业本身,都可以并行地、相互交错地执行,从而极大地加速了整个训练进程。

Image

了解更多Alluxio与AI/ML模型训练传统方案的对比分析,具体性能测试情况,以及来自广泛行业的应用案例,欢迎阅读《分布式统一大数据虚拟文件系统——Alluxio原理、技术与实践》。

直播预告

直播主题

Alluxio: 加速新一代大数据与AI变革 |

《分布式统一大数据虚拟文件系统 Alluxio原理、技术与实践》新书发布会

在这里插入图片描述

直播时间

9 月 21日(星期四)

20:00 - 21:30

本次直播主要介绍Alluxio的技术原理、核心功能、使用方法,以及Alluxio在大数据分析、AI/ML等场景的实战案例。

直播观看方式

微信搜索视频号:IT阅读排行榜,预约直播

Image

抽奖方式

  • 关注 + 点赞 + 收藏 文章

  • 评论区留言:学全栈知识找鹤冲天(关注并留言才能进入奖池,每人最多留言三条)

  • 周日晚八点随机抽奖

  • 本次送书2~5本【阅读量越多,送的越多】
    500-1000 赠书2本
    1000-1500 赠书3本
    1500-2000 赠书4本
    2000+ 赠书5本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/111841.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器数据恢复-EVA存储多块硬盘磁头和盘片损坏离线的数据恢复案例

服务器数据恢复环境: HP EVA某型号存储,存储中一共有23块磁盘,上层映射给一台windows server服务器上。 服务器故障&检测&分析: 该EVA存储上三块硬盘指示灯显示黄色,此时存储设备还能正常工作。运维更换显示黄…

Linux日志管理-logrotate(crontab定时任务、Ceph日志转储)

文章目录 一、logrotate概述二、logrotate基本用法三、logrotate运行机制logrotate参数 四、logrotate是怎么做到滚动日志时不影响程序正常的日志输出呢?Linux文件操作机制方案一方案二 五、logrotate实战--Ceph日志转储参考 一、logrotate概述 logrotate是一个用于…

【八大经典排序算法】堆排序

【八大经典排序算法】堆排序 一、概述二、思路解读三、代码实现(大堆为例) 一、概述 堆排序是J.W.J. Williams于1964年提出的。他提出了一种利用堆的数据结构进行排序的算法,并将其称为堆排序。堆排序是基于选择排序的一种改进,通…

IOTE2023物联网展最新快讯|央企入驻,找物联网平台这一家就够了

IOTE 2023第20届国际物联网展深圳站即将于9月20-22日在深圳国际会展中心(宝安)启幕!航天科技控股集团股份有限公司旗下AIRIOT物联网平台亮相【工业物联网展区9B31-1展位】。 AIRIOT物联网平台定位于通用型物联网技术框架产品,以软…

12306 抢票小助手: 完整易用的抢票解决方案 | 开源日报 0917

testerSunshine/12306 Stars: 31.4k License: MIT 12306 购票小助手是一个使用 Python 编写的项目,主要功能包括自动打码、自动登录、准点预售和捡漏、智能候补以及邮件通知等。该项目具有以下核心优势: 支持多个版本的 Python提供验证码本地识别功能可…

Flutter flutter.minSdkVersion的实际文件位置

Flutter 项目的Android相关版本号配置: flutter.minSdkVersion 的版本号配置文件实际路径: …/flutter_sdk/packages/flutter_tools/gradle/src/main/groovy/flutter.groovy Flutter版本号如下: bzbMacBook-Pro ccsmec % flutter --version …

【iOS】push与present Controller的区别

文章目录 前言一、push方法二、pop方法三、present方法四、dismiss方法五、dismiss多级的方法举例动画 前言 iOS推出与退出界面有两种方式——push与present,接下来笔者分别介绍这两种方式 一、push方法 SecondViewController *second [[SecondViewController all…

JMeter基础 —— 使用Badboy录制JMeter脚本!

1、使用Badboy录制JMeter脚本 打开Badboy工具开始进行脚本录制: (1)当我们打开Badboy工具时,默认就进入录制状态。 如下图: 当然我们也可以点击录制按钮进行切换。 (2)在地址栏中输入被测地…

机器视觉检测在流水线上的技术应用

机器视觉在流水线上的应用机器视觉系统的主要功能可以简单概括为:定位、识别、测量、缺陷检测等。相对于人工或传统机械方式而言,机器视觉系统具有速度快、精度高、准确性高等一系列优点。随着工业现代化发展,机器视觉已经广泛应用于各大领域…

idea中VM options的设置 (分配内存)

1. 打开Edit Configurations... 2. 找到 VM options 栏目, 设置参数 -Dserver.port8009 -Xmx512M -Xms256M -Xmx: 最大内存 -Xms最小内存

vue实现水平switch多个切换按钮

页面 <div class"switchbtn"><span :class"{ active: isCheck 1 }" click"checkBtn(1)">当前</span><span :class"{ active: isCheck 2 }" click"checkBtn(2)">1日费率</span><span :c…

【八大经典排序算法】冒泡排序

【八大经典排序算法】冒泡排序 一、概述二、思路解读三、代码实现四、优化 一、概述 冒泡排序由于其简单和易于理解&#xff0c;使其成为初学者学习排序算法的首选&#xff0c;也是初学者接触到的第一个排序算法。其原理是通过重复交换相邻的元素来将最大的元素逐步“冒泡”到…