通义千问杀疯了!首发Qwen-VL-Chat模型的A卡本地部署教程

在这里插入图片描述

阿里云最新开源的通义千问视觉语言模型:Qwen-VL

Qwen-VL 是一款支持中英文等多种语言的视觉语言(Vision Language,VL)模型,相较于此前的 VL 模型,其除了具备基本的图文识别、描述、问答及对话能力之外,还新增了视觉定位、图像中文字理解等能力。Qwen-VL 以 Qwen-7B 为基座语言模型,在模型架构上引入视觉编码器,使得模型支持视觉信号输入,该模型支持的图像输入分辨率为 448,此前开源的 LVLM 模型通常仅支持 224 分辨率。

量化 (Quantization)

据官方在评测基准 TouchStone 上的测试结果:量化 (Quantization)为Int4后,基本没有性能损失:

QuantizationZH.EN
BF16401.2645.2
Int4386.6651.4

推理速度 (Inference Speed)

输入一张图片(即258个token)的条件下BF16和Int4的模型生成1792 (2048-258) 和 7934 (8192-258) 个token的平均速度:

QuantizationSpeed (2048 tokens)Speed (8192 tokens)
BF1628.8724.32
Int437.7934.34

快速部署,只需5步

本教程使用Qwen-VL-Chat的量化模型:【Qwen-VL-Chat-Int4】

本地环境:Ubuntu22.04.2 LTS + AMD® Radeon RX6700 XT(其他型号A卡也是可以玩的,不过需确保有12GB或更大显存)在这里插入图片描述

1. 下载模型和配置文件

# 将这个HF仓库里的全部文件下载
git lfs install
git clone https://huggingface.co/4bit/Qwen-VL-Chat-Int4

2. 安装A卡的ROCm环境(如果你之前已安装,可跳过这一步)

在我这篇AI画图的文章里有详细的ROCm安装步骤: ROCm运行Stable Diffusion画图

3. 创建venv环境并安装A卡ROCm版Pytorch、optimum等依赖库

3.1 创建名为Qwen的venv环境

cd Qwen-VL-Chat-Int4python3 -m venv Qwen## 激活Qwen
. Qwen/bin/activate## 安装torch torchvision torchaudio
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.4.2

3.2 用vim打开requirements.txt文件,将以下内容全覆盖进去

transformers==4.32.0
accelerate==0.23.0
tiktoken
einops
transformers_stream_generator==0.0.4
gradio
scipy
pillow
tensorboard
matplotlib

3.3 安装基本依赖库:

pip install -r ./requirements.txt

4. 安装A卡版本auto-gptq

pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm542/
pip install -q optimum

5. 运行测试

5.1 创建web_run.py文件,将以下内容复制进去

# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree."""A simple web interactive chat demo based on gradio."""from argparse import ArgumentParser
from pathlib import Pathimport copy
import gradio as gr
import os
import re
import secrets
import tempfile
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfigDEFAULT_CKPT_PATH = 'Qwen/Qwen-VL-Chat'
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."def _get_args():parser = ArgumentParser()parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,help="Checkpoint name or path, default to %(default)r")parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")parser.add_argument("--share", action="store_true", default=False,help="Create a publicly shareable link for the interface.")parser.add_argument("--inbrowser", action="store_true", default=False,help="Automatically launch the interface in a new tab on the default browser.")parser.add_argument("--server-port", type=int, default=8000,help="Demo server port.")parser.add_argument("--server-name", type=str, default="127.0.0.1",help="Demo server name.")args = parser.parse_args()return argsdef _load_model_tokenizer(args):tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True, resume_download=True,)if args.cpu_only:device_map = "cpu"else:device_map = "cuda"model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path,device_map=device_map,trust_remote_code=True,resume_download=True,).eval()model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True, resume_download=True,)return model, tokenizerdef _parse_text(text):lines = text.split("\n")lines = [line for line in lines if line != ""]count = 0for i, line in enumerate(lines):if "```" in line:count += 1items = line.split("`")if count % 2 == 1:lines[i] = f'<pre><code class="language-{items[-1]}">'else:lines[i] = f"<br></code></pre>"else:if i > 0:if count % 2 == 1:line = line.replace("`", r"\`")line = line.replace("<", "&lt;")line = line.replace(">", "&gt;")line = line.replace(" ", "&nbsp;")line = line.replace("*", "&ast;")line = line.replace("_", "&lowbar;")line = line.replace("-", "&#45;")line = line.replace(".", "&#46;")line = line.replace("!", "&#33;")line = line.replace("(", "&#40;")line = line.replace(")", "&#41;")line = line.replace("$", "&#36;")lines[i] = "<br>" + linetext = "".join(lines)return textdef _launch_demo(args, model, tokenizer):uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")def predict(_chatbot, task_history):chat_query = _chatbot[-1][0]query = task_history[-1][0]print("User: " + _parse_text(query))history_cp = copy.deepcopy(task_history)full_response = ""history_filter = []pic_idx = 1pre = ""for i, (q, a) in enumerate(history_cp):if isinstance(q, (tuple, list)):q = f'Picture {pic_idx}: <img>{q[0]}</img>'pre += q + '\n'pic_idx += 1else:pre += qhistory_filter.append((pre, a))pre = ""history, message = history_filter[:-1], history_filter[-1][0]response, history = model.chat(tokenizer, message, history=history)image = tokenizer.draw_bbox_on_latest_picture(response, history)if image is not None:temp_dir = secrets.token_hex(20)temp_dir = Path(uploaded_file_dir) / temp_dirtemp_dir.mkdir(exist_ok=True, parents=True)name = f"tmp{secrets.token_hex(5)}.jpg"filename = temp_dir / nameimage.save(str(filename))_chatbot[-1] = (_parse_text(chat_query), (str(filename),))chat_response = response.replace("<ref>", "")chat_response = chat_response.replace(r"</ref>", "")chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)if chat_response != "":_chatbot.append((None, chat_response))else:_chatbot[-1] = (_parse_text(chat_query), response)full_response = _parse_text(response)task_history[-1] = (query, full_response)print("Qwen-VL-Chat: " + _parse_text(full_response))return _chatbotdef regenerate(_chatbot, task_history):if not task_history:return _chatbotitem = task_history[-1]if item[1] is None:return _chatbottask_history[-1] = (item[0], None)chatbot_item = _chatbot.pop(-1)if chatbot_item[0] is None:_chatbot[-1] = (_chatbot[-1][0], None)else:_chatbot.append((chatbot_item[0], None))return predict(_chatbot, task_history)def add_text(history, task_history, text):task_text = textif len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:task_text = text[:-1]history = history + [(_parse_text(text), None)]task_history = task_history + [(task_text, None)]return history, task_history, ""def add_file(history, task_history, file):history = history + [((file.name,), None)]task_history = task_history + [((file.name,), None)]return history, task_historydef reset_user_input():return gr.update(value="")def reset_state(task_history):task_history.clear()return []with gr.Blocks() as demo:gr.Markdown("""\
<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-7B-Chat/repo?
Revision=master&FilePath=assets/logo.jpeg&View=true" style="height: 80px"/><p>""")gr.Markdown("""<center><font size=8>Qwen-VL-Chat Bot</center>""")gr.Markdown("""\
<center><font size=3>This WebUI is based on Qwen-VL-Chat, developed by Alibaba Cloud. \
(本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能。)</center>""")gr.Markdown("""\
<center><font size=4>Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 </a> 
| <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | 
Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 </a> | 
<a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | 
&nbsp<a href="https://github.com/QwenLM/Qwen-VL">Github</a></center>""")chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=750)query = gr.Textbox(lines=2, label='Input')task_history = gr.State([])with gr.Row():empty_bin = gr.Button("🧹 Clear History (清除历史)")submit_btn = gr.Button("🚀 Submit (发送)")regen_btn = gr.Button("🤔️ Regenerate (重试)")addfile_btn = gr.UploadButton("📁 Upload (上传文件)", file_types=["image"])submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)submit_btn.click(reset_user_input, [], [query])empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen-VL. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")demo.queue().launch(share=args.share,inbrowser=args.inbrowser,server_port=args.server_port,server_name=args.server_name,)def main():args = _get_args()model, tokenizer = _load_model_tokenizer(args)_launch_demo(args, model, tokenizer)if __name__ == '__main__':main()

5.2 启动~

python web_run.py -c .
点击开始体验:

http://127.0.0.1:8000


对话和图片识别演示

人物识别:
在这里插入图片描述图形标注:
在这里插入图片描述

Q&A:N卡有12GB显存,可以跑吗?

可以,除了前置条件N卡驱动和CUDA以外,安装N卡的auto-gptq即可运行

N卡:
对于安装了CUDA 11.8的用户:

pip install auto-gptq[triton] --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

更多介绍可到官方查看: AutoGPTQ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/112057.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[MAUI]实现动态拖拽排序网格

文章目录 创建页面元素创建可绑定对象创建绑定服务类拖拽&#xff08;Drag&#xff09;拖拽悬停&#xff0c;经过&#xff08;DragOver&#xff09;释放&#xff08;Drop&#xff09; 限流(Throttle)和防抖(Debounce)项目地址 上一章我们使用拖放(drag-drop)手势识别实现了可拖…

CocosCreator3.8研究笔记(十八)CocosCreator UI组件(二)

前面的文章已经介绍了Canvas 组件、UITransform 组件、Widget 组件 。 想了解的朋友&#xff0c;请查看 CocosCreator3.8研究笔记&#xff08;十七&#xff09;CocosCreator UI组件&#xff08;一&#xff09;。 今天我们主要介绍CocosCreator 常用容器组件&#xff1a;Layout …

C++---异常处理

异常处理 异常处理try语句块和throw表达式异常的抛出和捕获异常的抛出和匹配原则 异常安全异常规范标准异常 异常处理 异常是指存在于运行时的反常行为&#xff0c;这些行为超出了函数正常功能的范围。当程序的某部分检测到一个他无法处理的问题时&#xff0c;需要用到异常处理…

springboot基础--实现默认登录页面

1、搭建项目 依赖中 多加入thymeleaf依赖 <dependencies><!--thymeleaf的依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><!--we…

Cpp/Qt-day010915Qt

目录 将工程文件进行注释 实现如下界面 头文件&#xff1a;widget.h: 源文件&#xff1a;widget.cpp: 运行效果 思维导图 将工程文件进行注释 实现如下界面 头文件&#xff1a;widget.h: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QLabe…

【Linux】基础IO,软硬链接,动静态库

1. 认识IO 什么是IO I/O简单来说对应的就是两个单词Input和Output&#xff0c;指的是计算机系统与外部环境&#xff08;通常是硬件设备或其他计算机系统&#xff09;之间的数据交换过程 I/O 可以分为两种主要类型&#xff1a; 输入&#xff08;Input&#xff09;&#xff1a; …

人工智能训练师

人工智能训练师是一个较新的职业&#xff0c;2020年2月才被正式纳入国家职业分类目录。他们主要负责在人工智能产品使用过程中进行数据库管理、算法参数设置、人机交互设计、性能测试跟踪及其他辅助作业。 这个职业的背景源于AI公司从客户&#xff08;用户&#xff09;那里获取…

【SpringMVC】文件上传与下载、JREBEL使用

目录 一、引言 二、文件的上传 1、单文件上传 1.1、数据表准备 1.2、添加依赖 1.3、配置文件 1.4、编写表单 1.5、编写controller层 2、多文件上传 2.1、编写form表单 2.2、编写controller层 2.3、测试 三、文件下载 四、JREBEL使用 1、下载注册 2、离线设置 一…

uniapp视频播放功能

UniApp提供了多种视频播放组件&#xff0c;包括视频播放器&#xff08;video&#xff09;、多媒体组件&#xff08;media&#xff09;、WebView&#xff08;内置Video标签&#xff09;等。其中&#xff0c;video和media组件是最常用的。 video组件 video组件是基于HTML5 vide…

Windows Server 2012 R2系统远程桌面的数字证书算法SHA1升级到SHA256

问题描述&#xff1a; 最近项目进行密评的时候&#xff0c;Windows Server 2012 R2发现了以下证书问题&#xff1a; Windows Server 2012 R2系统远程桌面的TLS 1.2协议使用SHA1算法数字证书&#xff0c;且证书有效日期截止23年10月&#xff0c;建议注意证书到期时间&#xff…

JDK14特性——其他变化

文章目录 友好的空指针异常提示JAVA打包工具JFR事件流简介JFR使用JMC工具JFR事件JFR事件流 外部存储器API (孵化阶段)非易失性映射字节缓冲区 友好的空指针异常提示 NullpointerException是java开发中经常遇见的问题&#xff0c;在JDK14之前的版本中&#xff0c;空指针异常的提…

WebGL 计算点光源下的漫反射光颜色

目录 点光源光 逐顶点光照&#xff08;插值&#xff09; 示例程序&#xff08;PointLightedCube.js&#xff09; 代码详解 示例效果 逐顶点处理点光源光照效果时出现的不自然现象 更逼真&#xff1a;逐片元光照 示例程序&#xff08;PointLightedCube_perFragment.js…