【LLM】Windows本地CPU部署民间版中文羊驼模型(Chinese-LLaMA-Alpaca)踩坑记录

目录

前言

准备工作

Git 

Python3.9 

Cmake

下载模型 

合并模型

部署模型 


前言

想必有小伙伴也想跟我一样体验下部署大语言模型, 但碍于经济实力, 不过民间上出现了大量的量化模型, 我们平民也能体验体验啦~, 该模型可以在笔记本电脑上部署, 确保你电脑至少有16G运行内存

开原地址:GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU部署 (Chinese LLaMA & Alpaca LLMs)

Linux和Mac的教程在开源的仓库中有提供,当然如果你是M1的也可以参考以下文章:

https://gist.github.com/cedrickchee/e8d4cb0c4b1df6cc47ce8b18457ebde0


准备工作

最好是有代理, 不然你下载东西可能失败, 我为了下个模型花了一天时间, 痛哭~ 

我们需要先在电脑上安装以下环境:  

  • Git
  • Python3.9(使用Anaconda3创建该环境) 
  • Cmake(如果你电脑没有C和C++的编译环境还需要安装mingw)

Git 

下载地址:Git - Downloading Package 

下载好安装包后打开, 一直点下一步安装即可... 

在cmd窗口输入以下如果有版本号显示说明已经安装成功

git -v

Python3.9 

 我这里使用Anaconda3来使用Python, Anaconda3是什么?

如果你熟悉docker, 那么你可以把docker的概念带过来, docker可以创建很多个容器, 每个容器的环境可能一样也可能不一样, Anaconda3也是一样的, 它可以创建很多个不同的Python版本, 互相不冲突, 想用哪个版本就切换到哪个版本...

 Anaconda3下载地址:Anaconda | Anaconda Distribution

 安装步骤参考:

 等待安装好后一直点next, 直到点Finish关闭即可

在cmd窗口输入以下命令, 显示版本号则说明安装成功

conda -V

接下来我们在cmd窗口输入以下命令创建一个python3.9的环境 

conda create --name py39 python=3.9 -y

--name后面的py39是环境名字, 可以自己任意起, 切换环境的时候需要它

python=3.9是指定python版本

添加-y后就不需要手动输入y去确认安装了

查看有哪些环境的命令:

conda info -e

激活/切换环境的命令:

conda activate py39

 要使用哪个环境的话换成对应名字即可

 进入环境后你就可以在这输入python相关的命令了, 如:

 要退出环境的话输入:

conda deactivate

当我退出环境后再查看python版本的话会提示我不是内部或外部命令,也不是可运行的程序
或批处理文件。如:

Cmake

这是一个编译工具, 我们需要使用它去编译llama.cpp, 量化模型需要用到, 不量化模型个人电脑跑不起来, 觉得量化这个概念不理解的可以理解为压缩, 这种概念是不对的, 只是为了帮助你更好的理解.

在安装之前我们需要安装mingw, 避免编译时找不到编译环境, 按下win+r快捷键输入powershell

输入命令安装scoop, 这是一个包管理器, 我们使用它来下载安装mingw:

这个地方如果没有开代理的话可能会出错 

iex "& {$(irm get.scoop.sh)} -RunAsAdmin"

安装好后分别运行下面两个命令(添加库):

scoop bucket add extras
scoop bucket add main

 输入命令安装mingw

scoop install mingw

到这就已经安装好mingw了, 如果报错了请评论, 我看到了会回复

接下来安装Cmake

地址:Download | CMake 

 安装参考:

 安装好后点Finish即可


下载模型 

我们需要下载两个模型, 一个是原版的LLaMA模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

  • 原版模型下载地址(要代理):https://ipfs.io/ipfs/Qmb9y5GCkTG7ZzbBWMu2BXwMkzyCKcUjtEKPpgdZ7GEFKm/
  • 备用:nyanko7/LLaMA-7B at main

  • 扩充了中文的模型下载:

建议在D盘上新建一个文件夹, 在里面进行下载操作, 如下:

 在弹出的框中分别输入以下命令:

git lfs install
git clone https://huggingface.co/ziqingyang/chinese-alpaca-lora-7b

这里可能会因为网络问题一直失败......一直重试就行, 有别的问题请评论, 看到会回复


合并模型

终于写到这里了, 累~

在你下载了模型的目录内打开cmd窗口, 如下:

这里我先说下这图片中的两个目录里文件是啥吧

先是chinese-alpaca-lora-7b目录, 这个目录一般你下载下来就不用动了, 格式如下:

chinese-alpaca-lora-7b/
        - adapter_config.json
        - adapter_model.bin
        - special_tokens_map.json
        - tokenizer_config.json
        - tokenizer.model

然后是path_to_original_llama_root_dir目录, 这个文件夹需要创建, 保持一致的文件名, 目录内的格式如下:

path_to_original_llama_root_dir/

        - 7B/        #这是一个名为7B的文件夹

                - checklist.chk

                - consolidated.00.pth

                - params.json

                - tokenizer_checklist.chk

        - tokenizer.model

自行按照上面的格式存放

 打开窗口后需要先激活python环境, 使用的就是前面装Anaconda3

# 不记得有哪些环境的先运行以下命令
conda info -e# 然后激活你需要的环境  我的环境名是py39
conda activate py39

切换好后分别执行以下命令安装依赖库

pip install git+https://github.com/huggingface/transformerspip install sentencepiece==0.1.97pip install peft==0.2.0

执行命令安装成功后会有Successfully的字眼

 接下来需要将原版模型转HF格式, 需要借助最新版🤗transformers提供的脚本convert_llama_weights_to_hf.py

在目录内新建一个convert_llama_weights_to_hf.py文件, 用记事本打开后把以下代码粘贴进去

注意:我这里是为了方便直接拷贝出来了,脚本可能会更新,建议直接去以下地址拷贝最新的:

transformers/convert_llama_weights_to_hf.py at main · huggingface/transformers · GitHub

# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import math
import os
import shutil
import warningsimport torchfrom transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizertry:from transformers import LlamaTokenizerFast
except ImportError as e:warnings.warn(e)warnings.warn("The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion")LlamaTokenizerFast = None"""
Sample usage:```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```Thereafter, models can be loaded via:```py
from transformers import LlamaForCausalLM, LlamaTokenizermodel = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""INTERMEDIATE_SIZE_MAP = {"7B": 11008,"13B": 13824,"30B": 17920,"65B": 22016,
}
NUM_SHARDS = {"7B": 1,"13B": 2,"30B": 4,"65B": 8,
}def compute_intermediate_size(n):return int(math.ceil(n * 8 / 3) + 255) // 256 * 256def read_json(path):with open(path, "r") as f:return json.load(f)def write_json(text, path):with open(path, "w") as f:json.dump(text, f)def write_model(model_path, input_base_path, model_size):os.makedirs(model_path, exist_ok=True)tmp_model_path = os.path.join(model_path, "tmp")os.makedirs(tmp_model_path, exist_ok=True)params = read_json(os.path.join(input_base_path, "params.json"))num_shards = NUM_SHARDS[model_size]n_layers = params["n_layers"]n_heads = params["n_heads"]n_heads_per_shard = n_heads // num_shardsdim = params["dim"]dims_per_head = dim // n_headsbase = 10000.0inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))# permute for sliced rotarydef permute(w):return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)print(f"Fetching all parameters from the checkpoint at {input_base_path}.")# Load weightsif model_size == "7B":# Not shared# (The sharded implementation would also work, but this is simpler.)loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")else:# Shardedloaded = [torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")for i in range(num_shards)]param_count = 0index_dict = {"weight_map": {}}for layer_i in range(n_layers):filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"if model_size == "7B":# Unshardedstate_dict = {f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(loaded[f"layers.{layer_i}.attention.wq.weight"]),f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(loaded[f"layers.{layer_i}.attention.wk.weight"]),f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],}else:# Sharded# Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint# becoming 37GB instead of 26GB for some reason.state_dict = {f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"].clone(),f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"].clone(),}state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(torch.cat([loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)for i in range(num_shards)],dim=0,).reshape(dim, dim))state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(torch.cat([loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)for i in range(num_shards)],dim=0,).reshape(dim, dim))state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)for i in range(num_shards)],dim=0,).reshape(dim, dim)state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1)state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0)state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1)state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0)state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freqfor k, v in state_dict.items():index_dict["weight_map"][k] = filenameparam_count += v.numel()torch.save(state_dict, os.path.join(tmp_model_path, filename))filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"if model_size == "7B":# Unshardedstate_dict = {"model.embed_tokens.weight": loaded["tok_embeddings.weight"],"model.norm.weight": loaded["norm.weight"],"lm_head.weight": loaded["output.weight"],}else:state_dict = {"model.norm.weight": loaded[0]["norm.weight"],"model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1),"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),}for k, v in state_dict.items():index_dict["weight_map"][k] = filenameparam_count += v.numel()torch.save(state_dict, os.path.join(tmp_model_path, filename))# Write configsindex_dict["metadata"] = {"total_size": param_count * 2}write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))config = LlamaConfig(hidden_size=dim,intermediate_size=compute_intermediate_size(dim),num_attention_heads=params["n_heads"],num_hidden_layers=params["n_layers"],rms_norm_eps=params["norm_eps"],)config.save_pretrained(tmp_model_path)# Make space so we can load the model properly now.del state_dictdel loadedgc.collect()print("Loading the checkpoint in a Llama model.")model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)# Avoid saving this as part of the config.del model.config._name_or_pathprint("Saving in the Transformers format.")model.save_pretrained(model_path)shutil.rmtree(tmp_model_path)def write_tokenizer(tokenizer_path, input_tokenizer_path):# Initialize the tokenizer based on the `spm` modeltokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFastprint("Saving a {tokenizer_class} to {tokenizer_path}")tokenizer = tokenizer_class(input_tokenizer_path)tokenizer.save_pretrained(tokenizer_path)def main():parser = argparse.ArgumentParser()parser.add_argument("--input_dir",help="Location of LLaMA weights, which contains tokenizer.model and model folders",)parser.add_argument("--model_size",choices=["7B", "13B", "30B", "65B", "tokenizer_only"],)parser.add_argument("--output_dir",help="Location to write HF model and tokenizer",)args = parser.parse_args()if args.model_size != "tokenizer_only":write_model(model_path=args.output_dir,input_base_path=os.path.join(args.input_dir, args.model_size),model_size=args.model_size,)spm_path = os.path.join(args.input_dir, "tokenizer.model")write_tokenizer(args.output_dir, spm_path)if __name__ == "__main__":main()

在cmd窗口执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7B --output_dir path_to_original_llama_hf_dir

经过漫长的等待....

 接下来合并输出PyTorch版本权重(.pth文件),使用merge_llama_with_chinese_lora.py脚本

在目录新建一个merge_llama_with_chinese_lora.py文件, 用记事本打开将以下代码粘贴进去

注意:我这里是为了方便直接拷贝出来了,脚本可能会更新,建议直接去以下地址拷贝最新的: 

Chinese-LLaMA-Alpaca/merge_llama_with_chinese_lora.py at main · ymcui/Chinese-LLaMA-Alpaca · GitHub

"""
Borrowed and modified from https://github.com/tloen/alpaca-lora
"""import argparse
import os
import json
import gcimport torch
import transformers
import peft
from peft import PeftModelparser = argparse.ArgumentParser()
parser.add_argument('--base_model',default=None,required=True,type=str,help="Please specify a base_model")
parser.add_argument('--lora_model',default=None,required=True,type=str,help="Please specify a lora_model")# deprecated; the script infers the model size from the checkpoint
parser.add_argument('--model_size',default='7B',type=str,help="Size of the LLaMA model",choices=['7B','13B'])parser.add_argument('--offload_dir',default=None,type=str,help="(Optional) Please specify a temp folder for offloading (useful for low-RAM machines). Default None (disable offload).")
parser.add_argument('--output_dir',default='./',type=str)
args = parser.parse_args()assert ("LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLMBASE_MODEL = args.base_model
LORA_MODEL = args.lora_model
output_dir = args.output_dirassert (BASE_MODEL
), "Please specify a BASE_MODEL in the script, e.g. 'decapoda-research/llama-7b-hf'"tokenizer = LlamaTokenizer.from_pretrained(LORA_MODEL)
if args.offload_dir is not None:# Load with offloading, which is useful for low-RAM machines.# Note that if you have enough RAM, please use original method instead, as it is faster.base_model = LlamaForCausalLM.from_pretrained(BASE_MODEL,load_in_8bit=False,torch_dtype=torch.float16,offload_folder=args.offload_dir,offload_state_dict=True,low_cpu_mem_usage=True,device_map={"": "cpu"},)
else:# Original method without offloadingbase_model = LlamaForCausalLM.from_pretrained(BASE_MODEL,load_in_8bit=False,torch_dtype=torch.float16,device_map={"": "cpu"},)base_model.resize_token_embeddings(len(tokenizer))
assert base_model.get_input_embeddings().weight.size(0) == len(tokenizer)
tokenizer.save_pretrained(output_dir)
print(f"Extended vocabulary size: {len(tokenizer)}")first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()## infer the model size from the checkpoint
emb_to_model_size = {4096 : '7B',5120 : '13B',6656 : '30B',8192 : '65B',
}
embedding_size = base_model.get_input_embeddings().weight.size(1)
model_size = emb_to_model_size[embedding_size]
print(f"Loading LoRA for {model_size} model")lora_model = PeftModel.from_pretrained(base_model,LORA_MODEL,device_map={"": "cpu"},torch_dtype=torch.float16,
)assert torch.allclose(first_weight_old, first_weight)
# merge weights
print(f"Peft version: {peft.__version__}")
print(f"Merging model")
if peft.__version__ > '0.2.0':# merge weights - new merging method from peftlora_model = lora_model.merge_and_unload()
else:# merge weightsfor layer in lora_model.base_model.model.model.layers:if hasattr(layer.self_attn.q_proj,'merge_weights'):layer.self_attn.q_proj.merge_weights = Trueif hasattr(layer.self_attn.v_proj,'merge_weights'):layer.self_attn.v_proj.merge_weights = Trueif hasattr(layer.self_attn.k_proj,'merge_weights'):layer.self_attn.k_proj.merge_weights = Trueif hasattr(layer.self_attn.o_proj,'merge_weights'):layer.self_attn.o_proj.merge_weights = Trueif hasattr(layer.mlp.gate_proj,'merge_weights'):layer.mlp.gate_proj.merge_weights = Trueif hasattr(layer.mlp.down_proj,'merge_weights'):layer.mlp.down_proj.merge_weights = Trueif hasattr(layer.mlp.up_proj,'merge_weights'):layer.mlp.up_proj.merge_weights = Truelora_model.train(False)# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)lora_model_sd = lora_model.state_dict()
del lora_model, base_modelnum_shards_of_models = {'7B': 1, '13B': 2}
params_of_models = {'7B':{"dim": 4096,"multiple_of": 256,"n_heads": 32,"n_layers": 32,"norm_eps": 1e-06,"vocab_size": -1,},'13B':{"dim": 5120,"multiple_of": 256,"n_heads": 40,"n_layers": 40,"norm_eps": 1e-06,"vocab_size": -1,},
}params = params_of_models[model_size]
num_shards = num_shards_of_models[model_size]n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))def permute(w):return (w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim))def unpermute(w):return (w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim))def translate_state_dict_key(k):k = k.replace("base_model.model.", "")if k == "model.embed_tokens.weight":return "tok_embeddings.weight"elif k == "model.norm.weight":return "norm.weight"elif k == "lm_head.weight":return "output.weight"elif k.startswith("model.layers."):layer = k.split(".")[2]if k.endswith(".self_attn.q_proj.weight"):return f"layers.{layer}.attention.wq.weight"elif k.endswith(".self_attn.k_proj.weight"):return f"layers.{layer}.attention.wk.weight"elif k.endswith(".self_attn.v_proj.weight"):return f"layers.{layer}.attention.wv.weight"elif k.endswith(".self_attn.o_proj.weight"):return f"layers.{layer}.attention.wo.weight"elif k.endswith(".mlp.gate_proj.weight"):return f"layers.{layer}.feed_forward.w1.weight"elif k.endswith(".mlp.down_proj.weight"):return f"layers.{layer}.feed_forward.w2.weight"elif k.endswith(".mlp.up_proj.weight"):return f"layers.{layer}.feed_forward.w3.weight"elif k.endswith(".input_layernorm.weight"):return f"layers.{layer}.attention_norm.weight"elif k.endswith(".post_attention_layernorm.weight"):return f"layers.{layer}.ffn_norm.weight"elif k.endswith("rotary_emb.inv_freq") or "lora" in k:return Noneelse:print(layer, k)raise NotImplementedErrorelse:print(k)raise NotImplementedErrordef save_shards(lora_model_sd, num_shards: int):# Add the no_grad context managerwith torch.no_grad():if num_shards == 1:new_state_dict = {}for k, v in lora_model_sd.items():new_k = translate_state_dict_key(k)if new_k is not None:if "wq" in new_k or "wk" in new_k:new_state_dict[new_k] = unpermute(v)else:new_state_dict[new_k] = vos.makedirs(output_dir, exist_ok=True)print(f"Saving shard 1 of {num_shards} into {output_dir}/consolidated.00.pth")torch.save(new_state_dict, output_dir + "/consolidated.00.pth")with open(output_dir + "/params.json", "w") as f:json.dump(params, f)else:new_state_dicts = [dict() for _ in range(num_shards)]for k in list(lora_model_sd.keys()):v = lora_model_sd[k]new_k = translate_state_dict_key(k)if new_k is not None:if new_k=='tok_embeddings.weight':print(f"Processing {new_k}")assert v.size(1)%num_shards==0splits = v.split(v.size(1)//num_shards,dim=1)elif new_k=='output.weight':print(f"Processing {new_k}")splits = v.split(v.size(0)//num_shards,dim=0)elif new_k=='norm.weight':print(f"Processing {new_k}")splits = [v] * num_shardselif 'ffn_norm.weight' in new_k:print(f"Processing {new_k}")splits = [v] * num_shardselif 'attention_norm.weight' in new_k:print(f"Processing {new_k}")splits = [v] * num_shardselif 'w1.weight' in new_k:print(f"Processing {new_k}")splits = v.split(v.size(0)//num_shards,dim=0)elif 'w2.weight' in new_k:print(f"Processing {new_k}")splits = v.split(v.size(1)//num_shards,dim=1)elif 'w3.weight' in new_k:print(f"Processing {new_k}")splits = v.split(v.size(0)//num_shards,dim=0)elif 'wo.weight' in new_k:print(f"Processing {new_k}")splits = v.split(v.size(1)//num_shards,dim=1)elif 'wv.weight' in new_k:print(f"Processing {new_k}")splits = v.split(v.size(0)//num_shards,dim=0)elif "wq.weight" in new_k or "wk.weight" in new_k:print(f"Processing {new_k}")v = unpermute(v)splits = v.split(v.size(0)//num_shards,dim=0)else:print(f"Unexpected key {new_k}")raise ValueErrorfor sd,split in zip(new_state_dicts,splits):sd[new_k] = split.clone()del splitdel splitsdel lora_model_sd[k],vgc.collect()    # Effectively enforce garbage collectionos.makedirs(output_dir, exist_ok=True)for i,new_state_dict in enumerate(new_state_dicts):print(f"Saving shard {i+1} of {num_shards} into {output_dir}/consolidated.0{i}.pth")torch.save(new_state_dict, output_dir + f"/consolidated.0{i}.pth")with open(output_dir + "/params.json", "w") as f:print(f"Saving params.json into {output_dir}/params.json")json.dump(params, f)save_shards(lora_model_sd=lora_model_sd, num_shards=num_shards)

 执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

参数说明:

  • --base_model:存放HF格式的LLaMA模型权重和配置文件的目录(前面步骤中转的hf格式)
  • --lora_model:扩充了中文的模型目录
  • --output_dir:指定保存全量模型权重的目录,默认为./(合并出来的目录)
  • (可选)--offload_dir:对于低内存用户需要指定一个offload缓存路径

更详细的请看开原仓库:GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)

到这里就已经合并好模型了, 目录:

接下来就准备部署吧


部署模型 

我们需要先下载llama.cpp进行模型的量化, 输入以下命令: 

git clone https://github.com/ggerganov/llama.cpp

目录如: 

 重点来了, 在窗口中输入以下命令进入刚刚下载的llama.cpp

cd llama.cpp

 如果你是跟着教程使用scoop(包管理器)安装的MinGW,请使用以下命令(不是的请往后看):

cmake . -G "MinGW Makefiles"cmake --build . --config Release

 走完以上命令后你应该能在llama.cpp的bin目录内看到以下文件:

 如果你是使用的安装包的方式安装的MinGW,请使用以下命令:

mkdir buildcd buildcmake ..cmake --build . --config Release

走完以上命令后在build =》Release =》bin目录下应该会有以下文件:

以上命令不能都输入,看你自己的情况选择命令!!! 

如果没有以上的文件, 那你应该是报错了, 基本上要么就是下载依赖的地方错, 要么就是编译的地方出错, 我在这里摸索了好久 

接下来在llama.cpp内新建一个zh-models文件夹, 准备生成量化版本模型

zh-models的目录格式如下:

zh-models/

        - 7B/        #这是一个名为7B的文件夹
                - consolidated.00.pth
                - params.json
        - tokenizer.model

把path_to_output_dir文件夹内的consolidated.00.pth和params.json文件放入上面格式中的位置

把path_to_output_dir文件夹内的tokenizer.model文件放在跟7B文件夹同级的位置

接着在窗口中输入命令将上述.pth模型权重转换为ggml的FP16格式,生成文件路径为zh-models/7B/ggml-model-f16.bin

python convert-pth-to-ggml.py zh-models/7B/ 1

 进一步对FP16模型进行4-bit量化,生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.bin

D:\llama\llama.cpp\bin\quantize.exe ./zh-models/7B/ggml-model-f16.bin ./zh-models/7B/ggml-model-q4_0.bin 2

quantize.exe文件在bin目录内, 自行根据路径更改

​到这就已经量化好了, 可以进行部署看看效果了, 部署的话如果你电脑配置好的可以选择部署f16的,否则就部署q4_0的....

D:\llama\llama.cpp\bin\main.exe -m zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

在提示符 > 之后输入你的prompt,cmd/ctrl+c中断输出,多行信息以\作为行尾 

常用参数(更多参数请执行D:\llama\llama.cpp\bin\main.exe -h命令)

-ins 启动类ChatGPT对话交流的运行模式
-f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt
-c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512)
-n 控制回复生成的最大长度(默认:128)
-b 控制batch size(默认:8),可适当增加
-t 控制线程数量(默认:4),可适当增加
--repeat_penalty 控制生成回复中对重复文本的惩罚力度
--temp 温度系数,值越低回复的随机性越小,反之越大
--top_p, top_k 控制解码采样的相关参数

想要部署f16的可以把命令中-m参数换成zh-models/7B/ggml-model-f16.bin即可

部署效果:

终于写完了~


参考:

  • GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)

👍点赞,你的认可是我创作的动力 !
🌟收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/112364.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Modbus RTU(Remote Terminal Unit)与RS-485协议介绍(主站设备(Master)、从站设备(Slave))

文章目录 Modbus RTU与RS-485协议介绍一、引言二、Modbus RTU 协议介绍2.1 Modbus RTU 协议简介2.2 Modbus RTU 协议帧结构主站设备、从站设备与从站设备地址2.3 Modbus RTU 协议举例 三、RS-485 协议介绍3.1 RS-485 协议简介3.2 RS-485 物理连接方式3.3 RS-485 与 Modbus RTU …

echarts的折线图,在点击图例后,提示出现变化,不报错。tooltip的formatter怎么写

在点击图例的年后,提示框会相应的变化,多选和单选都会响应变化。tooptip的重度在formatter tooltip:{show:true,trigger:"axis",alwaysShowContent:true,triggerOn:"mousemove",textStyle:{color:"#fff"},backgroundColor…

Dumi从0到1搭建属于自己的组件库

项目地址在末尾 初始化组件库 Dumi(官网) 使用dumi可以在开发组件库的同时,生成文档和demo 创建一个目录 mkdir test_demo cd test_demo使用dumi脚手架创建组件库 npx umijs/create-dumi-lib --site安装依赖,运行展示 npm …

Mock数据:单元测试中的心灵鸡汤

在当今的软件开发领域,质量控制已经成为了一个不可或缺的环节。为了确保软件的稳定性和可靠性,开发者们投入了大量的时间和精力进行各种测试。其中,单元测试作为最基础的测试方法,其重要性不言而喻。然而,单元测试中的…

插件化原理

插件化技术和热修复技术都属于动态加载,从普及率的角度来看,插件化技术还没有热修复的普及率高,主要原因是占大多数的中小型应用很少也没有必要去采用插件化技术。 Android P preview(Android 9)开始限制调用隐藏 API…

解决 010Edittor 复制问题

遇到的问题: 使用010Edittor做CTF题目的时候 复制Nex Text File 复制的内容在右边 解决方法: 如果要复制到左边是复制的问题 需要ctrlshift c 然后ctrlshift v粘贴即可。 具体操作如下: 这边复制过来就可以看到是RAR的文件格式另存为 修…

肖sir__mysql之索引__010

mysql之索引 一、什么是索引? 索引是一种数据结构设计 一个索引是存储的表中数据结构; 索引是建立在表字段上, 索引包含了一列值,这个值保存在一个数据结构中 二、索引作用 1、保证数据记录的唯一性 2、实现表与表之间的参照性 3…

Python入门-pack和unpack的用法

struct.calcsize(format) 返回与格式字符串format相对应的结构体的大小(以及由 生成的字节对象的大小 ) 使用大端顺序打包和解包三种不同大小的整数: from struct import *pack(">bhl", 1, 2, 3)unpack(>bhl, b\x01\x00\x…

ETH01-ETH驱动的配置01

总目录链接==>> AutoSAR入门和实战系列总目录 总目录链接==>> AutoSAR BSW高阶配置系列总目录 1 配置参数 /MICROSAR/Eth_Enet/Eth/EthConfigSet/EthCtrlConfig/EthTxBufConfig/EthTxBufTotal/MICROSAR/Eth_Enet/Eth/EthConfigSet/EthCtrlConfig/EthTxBufConf…

【数据结构】C++实现二叉搜索树

二叉搜索树的概念 二叉搜索树又称为二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有结点的值都小于根结点的值。若它的右子树不为空,则右子树上所有结点的值都大于根结…

深度学习——线性神经网络一

深度学习——线性神经网络一 文章目录 前言一、线性回归1.1. 线性回归的基本元素1.1.1. 线性模型1.1.2. 损失函数1.1.3. 解析解1.1.4. 随机梯度下降1.1.5. 用模型进行预测 1.2. 向量化加速1.3. 正态分布与平方损失1.4. 从线性回归到深度网络 二、线性回归的从零开始实现2.1. 生…