哈希及哈希表的实现

目录

一、哈希的引入 

二、概念

三、哈希冲突

四、哈希函数

常见的哈希函数

1、直接定址法

2、除留余数法

五、哈希冲突的解决

1、闭散列

2、开散列


一、哈希的引入 

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。

这种思想就是我们接下来要讲的哈希了。


二、概念

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立
一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素:根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
搜索元素:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。

当有这些数据时:1,4,5,6,7,9。我们可以通过下图的方式去插入数据。

 用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。


三、哈希冲突

按照上面的方式,如果我们插入的是 1,2,32,222,7,9这几个数呢?

我们发现,如果按照哈希的思想去插入的话,2,32,22将会被放在同一个位置,这样就会引起一些麻烦。如果我去访问下标为2位置的数据,到底访问的哪一个呢?我们将这种现象称为哈希冲突。

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。


四、哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

常见的哈希函数

1、直接定址法

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B。
优点:简单、均匀。
缺点:需要事先知道关键字的分布情况。
使用场景:适合查找比较小且连续的情况。

2、除留余数法

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p (p<=m),将关键码转换成哈希地址。


五、哈希冲突的解决

1、闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

那么这个下一个位置怎么确定呢?我们有两种方法来帮助我们寻找“下一个”位置。

~ 线性探测 

比如三中的情况,插入2之后,现在需要插入元素32,先通过哈希函数计算哈希地址为2,因此32理论上应该插在该位置,但是该位置已经放了值为2的元素,即发生哈希冲突。这时我们就需要去寻找该位置后面的空位置了。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

如下图,32只能插入在3的位置了。 

 注:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素
会影响其他元素的搜索。比如删除元素2,如果直接删除掉,32查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

在有限的空间内,随着我们插入的数据越来越多,冲突的概率也越来越大,查找效率越来越低,所以闭散列的冲突表不可能让它满了,所以我们就引入了负载因子:

负载因子(载荷因子):等于表中的有效数据个数/表的大小,衡量表的满程度,在闭散列中负载因子不可能超过1(1代表满了)。一般情况下,负载因子一般在0.7左右。负载因子越小,冲突概率也越小,但是消耗的空间越大,负载因子越大,冲突概率越大,空间的利用率越高。

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};//特化
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t val = 0;for (auto ch : key){val *= 131;val += ch;}return val;}
};namespace closehash
{
enum State
{EMPTY,DELETE,EXIST
};template<class K,class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:bool insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_tables.size() == 0 || 10 * _size / _tables.size() >= 7){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;HashTable<K, V, Hash> newHT;newHT._tables.resize(newsize);for (auto& e : _tables){if (e._state == EXIST){newHT.insert(e._kv);}}_tables.swap(newHT._tables);}Hash hash;size_t index = hash(kv.first) % _tables.size();//如果kv.first是string类型,那么就无法取模,因此我们要使用仿函数将其转换成整型//线性探测while (_tables[index]._state == EXIST){index++;index %= _tables.size();}_tables[index]._kv = kv;_tables[index]._state = EXIST;_size++;return true;}HashData<K, V>* Find(const K& key){if (_tables.size() == 0){return nullptr;}Hash hash;size_t hashi = hash(key) % _tables.size();size_t start = hashi;while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._state != DELETE && _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();if (hashi == start){break;}}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_size--;return true;}elsereturn false;}private:vector<HashData<K, V>> _tables;size_t _size = 0; //存储了多少个有效数据};

2、开散列

概念:开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

 

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

那么是不是我们只需要开固定的空间,然后其他的数据就一直连接到对应的桶的后面,那样桶是不是太长了呢?

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容。

增容条件:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

template<class K,class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;free(cur);cur = next;}_tables[i] = nullptr;}}bool insert(const pair<K, V>& kv){//去重if (Find(kv.first)){return false;}Hash hash;//扩容if (_size == _tables.size()){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 10;vector<Node*> newTables;newTables.resize(newsize, nullptr);//将旧表中结点移动映射到新表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hash(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hash(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_size++;return true;}Node* Find(const K& key){if (_tables.size() == 0)return nullptr;Hash hash;size_t hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;elsecur = cur->_next;}return nullptr;}bool erase(const K& key){if (_tables.size() == 0){return nullptr;}Hash hash;size_t hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){// 1、头删// 2、中间删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;_size--;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables;size_t _size = 0;};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/112423.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA clion + vim =neovim

Jetbrains IDE vim 插件 ‘good’*5;

【百问百答】可靠性基础知识第八期

1、什么是加速度频谱密度值(ASD) ? 表示随机信号的各个频率分量所包的加速度方均值在频域上是如何分布的。通常用ASD表示。 2、什么是功率频谱密度值(PSD) ? 表示随机信号的各个频率分量所包的功率在频域上是怎样分布的。通常用PSD表示&#xff0c;单位&#xff1a;g2/Hz。 0…

数据结构-时间复杂度/空间复杂度

Hello&#xff0c;好久没有更新了哦&#xff0c;已经开始学习数据结构了&#xff0c;这篇文章呢就是对刚学数据结构所接触到的时间复杂度进行一个分享哦&#xff0c;如果有错误之处&#xff0c;大家记得拍拍我哦~ 既然要讨论时间/空间复杂度&#xff0c;那我们就得知道时间/空…

9.18号作业

完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两个按钮…

【随想】每日两题Day.7

题目&#xff1a;面试题 02.07.链表相交 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 …

Ardupilot — EKF3使用光流室内定位代码梳理

文章目录 前言 1 Copter.cpp 1.1 void IRAM_ATTR Copter::fast_loop() 1.2 void Copter::read_AHRS(void) 1.3 对象ahrs说明 2 AP_AHRS_NavEKF.cpp 2.1 void AP_AHRS_NavEKF::update(bool skip_ins_update) 2.2 void AP_AHRS_NavEKF::update_EKF3(void) 2.3 对象EKF3说…

002 Linux 权限

前言 本文将会向您介绍关于linux权限方面的内容&#xff0c;包括文件类型&#xff0c;如何切换用户、基本权限、粘滞位等等 Linux具体的用户 超级用户&#xff1a;可以再linux系统下做任何事情&#xff0c;不受限制 普通用户&#xff1a;在linux下做有限的事情。 超级用户的…

「聊设计模式」之适配器模式(Adapter)

&#x1f3c6;本文收录于《聊设计模式》专栏&#xff0c;专门攻坚指数级提升&#xff0c;助你一臂之力&#xff0c;带你早日登顶&#x1f680;&#xff0c;欢迎持续关注&&收藏&&订阅&#xff01; 前言 在软件开发中&#xff0c;经常会涉及到现有系统的改造和升…

1. 快速体验 VSCode 和 CMake 创建 C/C++项目

1. 快速体验 VSCode 和 CMake 创建 C/C项目 本章的全部代码和markdown文件地址: CMake_Tutorial&#xff0c;欢迎互相交流. 此次介绍的内容都是针对于 Linux 操作系统上的开发过程. 1.1 安装开发工具 VSCode: 自行下载安装, 然后安装插件 Cmake:在 Ubuntu 系统上, 可以采用 ap…

浅析三维模型3DTile格式轻量化处理常见问题与处理措施

浅析三维模型3DTile格式轻量化处理常见问题与处理措施 三维模型3DTile格式的轻量化处理是大规模三维地理空间数据可视化的关键环节&#xff0c;但在实际操作过程中&#xff0c;往往会遇到一些问题。下面我们来看一下这些常见的问题以及对应的处理措施。 变形过大&#xff1a;压…

阿里云无影云电脑和传统PC有什么区别?

阿里云无影云电脑和传统电脑PC有什么区别&#xff1f;区别大了&#xff0c;无影云电脑是云端的桌面服务&#xff0c;传统PC是本地的硬件计算机&#xff0c;无影云电脑的数据是保存在云端&#xff0c;本地传统PC的数据是保存在本地客户端&#xff0c;阿里云百科分享阿里云无影云…

基于AR增强现实模拟离心泵结构拆装与运行

通过AR模拟&#xff0c;学生可以虚拟地观察离心泵的结构和部件&#xff0c;进行拆装、安装和调试的操作&#xff0c;而无需实际接触物理设备。这极大地降低了学生操作过程中的风险。 AR模拟离心泵的拆装过程可以分为几个步骤。首先&#xff0c;学生选择相应的模拟程序&#xff…