一、GPIO子系统相关API
1.解析GPIO相关的设备树节点
struct device_node *of_find_node_by_path(const char *path)
功能:根据设备树节点路径解析设备树节点信息
参数:
path:设备树所在的节点路径 /mynode@0X12345678
返回值:成功返回目标节点首地址,失败返回NULL
2.根据解析的GPIO相关节点信息获取GPIO编号
#include<linux/of_gpio.h>
int of_get_named_gpio(struct device_node *np,const char *propname, int index)
功能:获取GPIO编号
参数:np:设备树节点指针proname:gpio编号信息对应到的键名index:管脚在这个属性键值对中的索引号
返回值:成功返回GPIO编号,失败返回错误码
3.向内核申请要使用的GPIO编号
#include<linux/gpio.h>
int gpio_request(unsigned gpio, const char *label)
功能:申请GPIO编号
参数:gpio:要申请的GPIO编号label:标签,填NULL
返回值:成功返回0,失败返回错误码
int gpio_direction_input(unsigned gpio)
功能:将gpio编号对应的gpio管脚设置为输入
参数:gpio:gpio编号
返回值:成功返回0,失败返回错误码
int gpio_direction_output(unsigned gpio, int value)
功能:将gpio编号对应的gpio管脚设置为是输出
参数:gpio:gpio编号value:默认的输出值 (1)输出高电平 (0)输出低电平
返回值:成功返回0,失败返回错误码
void gpio_set_value(unsigned gpio, int value)
功能:设置gpio编号对应的gpio管脚 输出高低电平
参数:gpio:gpio编号value:默认的输出值 (1)输出高电平 (0)输出低电平
返回值:无
int gpio_get_value(unsigned gpio)
功能:获取gpio编号对应到的GPIO引脚状态值
参数:
gpio:gpio编号
返回值:1(高电平) 0(低电平状态)
void gpio_free(unsigned gpio)
功能:释放GPIO编号
参数:要释放的gpio编号
二、添加LED的设备树节点信息
在stm32mp157a-fsmp1a.dts文件的根节点中添加如下内容
myled{led1-gpio=<&gpioe 10 0>;//10表示使用的gpioe第几个管脚 0,表示gpio默认属性led2-gpio=<&gpiof 10 0>;led3-gpio=<&gpioe 8 0>;
};
三、基于gpio子系统编写LED灯的驱动
1.头文件
#ifndef __HEAD_H__
#define __HEAD_H__
typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR;
}gpio_t;
#define PHY_LED1_ADDR 0X50006000
#define PHY_LED2_ADDR 0X50007000
#define PHY_LED3_ADDR 0X50006000
#define PHY_RCC_ADDR 0X50000A28//构建LED开关的功能码
#define LED_ON _IO('l',1)
#define LED_OFF _IO('l',0)
#endif
2.测试文件
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include "head.h"
int main(int argc, const char *argv[])
{char buf[128] = "";int a;int fd;while (1){printf("请选择要打开的灯(1,2,3)\n");scanf(" %d", &a);switch (a){case 1:fd = open("/dev/myled0", O_RDWR);if (fd < 0){printf("设备文件打开失败\n");exit(-1);}printf("打开文件myled0成功\n");break;case 2:fd = open("/dev/myled1", O_RDWR);if (fd < 0){printf("设备文件打开失败\n");exit(-1);}printf("打开文件myled1成功\n");break;case 3:fd = open("/dev/myled2", O_RDWR);if (fd < 0){printf("设备文件打开失败\n");exit(-1);}printf("打开文件myled2成功\n");break;default:printf("请输入范围内的数\n");}int b;printf("请开灯关灯(0/1)\n");scanf(" %d",&b);switch(b){case 1:ioctl(fd,LED_ON);break;case 0:ioctl(fd,LED_OFF);break;default:printf("请输入'0'或'1'\n");}close(fd);printf("关闭文件\n"); }return 0;
}
3.驱动文件
#include <linux/init.h>
#include <linux/module.h>
#include<linux/cdev.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/device.h>
#include<linux/uaccess.h>
#include<linux/slab.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include "head.h"struct cdev *cdev;
char kbuf[128]={0};
unsigned int major=0;
unsigned int minor=0;
dev_t devno;
module_param(major,uint,0664);//方便在命令行传递major的值
struct class*cls;
struct device *dev;gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
struct device_node *dnode;
struct gpio_desc *gpiono1;
struct gpio_desc *gpiono2;
struct gpio_desc *gpiono3; int mycdev_open(struct inode *inode, struct file *file)
{int min=MINOR(inode->i_rdev);//根据打开的文件对应的设备号获取次设备号file->private_data=(void *)min;printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{int min=(int)file->private_data;switch(min){case 0://控制LED1switch (cmd){case LED_ON: // 开灯gpiod_set_value(gpiono1,1);break;case LED_OFF://关灯gpiod_set_value(gpiono1,0);break;}break;case 1://控制LED2switch (cmd){case LED_ON: // 开灯gpiod_set_value(gpiono2,1);break;case LED_OFF://关灯gpiod_set_value(gpiono2,0);break;}break;case 2://控制LED3switch (cmd){case LED_ON: // 开灯gpiod_set_value(gpiono3,1);break;case LED_OFF://关灯gpiod_set_value(gpiono3,0);break;}break;}return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}// 定义操作方法结构体变量并赋值
struct file_operations fops = {.open = mycdev_open,.unlocked_ioctl = mycdev_ioctl,.release = mycdev_close,
};int all_led_init(void)
{// 寄存器地址的映射vir_led1 = ioremap(PHY_LED1_ADDR, sizeof(gpio_t));if (vir_led1 == NULL){printk("ioremap filed:%d\n", __LINE__);return -ENOMEM;}vir_led2 = ioremap(PHY_LED2_ADDR, sizeof(gpio_t));if (vir_led2 == NULL){printk("ioremap filed:%d\n", __LINE__);return -ENOMEM;}vir_led3 = vir_led1;vir_rcc = ioremap(PHY_RCC_ADDR, 4);if (vir_rcc == NULL){printk("ioremap filed:%d\n", __LINE__);return -ENOMEM;}printk("物理地址映射成功\n");// 寄存器的初始化// rcc(*vir_rcc) |= (0X3 << 4);// led1vir_led1->MODER &= (~(3 << 20));vir_led1->MODER |= (1 << 20);vir_led1->ODR &= (~(1 << 10));// led2vir_led2->MODER &= (~(3 << 20));vir_led2->MODER |= (1 << 20);vir_led2->ODR &= (~(1 << 10));// led3vir_led3->MODER &= (~(3 << 16));vir_led1->MODER |= (1 << 16);vir_led1->ODR &= (~(1 << 8));printk("寄存器初始化成功\n");return 0;
}static int __init mycdev_init(void)
{int ret;//为字符设备驱动对象申请空间cdev=cdev_alloc();if(cdev==NULL){printk("字符设备驱动对象申请空间失败\n");ret=-EFAULT;goto out1;}printk("申请对象空间成功\n");//初始化字符设备驱动对象cdev_init(cdev,&fops);//申请设备号if(major>0)//静态指定设备号{ret=register_chrdev_region(MKDEV(major,minor),3,"myled");if(ret){printk("静态申请设备号失败\n");goto out2;}}else if(major==0)//动态申请设备号{ret=alloc_chrdev_region(&devno,minor,3,"myled");if(ret){printk("动态申请设备号失败\n");goto out2;}major=MAJOR(devno);//获取主设备号minor=MINOR(devno);//获取次设备号}printk("申请设备号成功\n");//注册字符设备驱动对象ret=cdev_add(cdev,MKDEV(major,minor),3);if(ret){printk("注册字符设备驱动对象失败\n");goto out3;}printk("注册字符设备驱动对象成功\n");//寄存器映射及初始化all_led_init();//向上提交目录信息cls=class_create(THIS_MODULE,"myled");if(IS_ERR(cls)){printk("向上提交目录失败\n");ret=-PTR_ERR(cls);goto out4;}printk("向上提交目录成功\n");//向上提交设备节点信息int i;for(i=0;i<3;i++){dev=device_create(cls,NULL,MKDEV(major,i),NULL,"myled%d",i);if(IS_ERR(dev)){printk("向上提交设备节点信息失败\n");ret=-PTR_ERR(dev);goto out5;}}printk("向上提交设备信息成功\n");//解析LED的设备树节点dnode=of_find_node_by_path("/myled");if(dnode==NULL){printk("解析设备树节点失败\n");return -ENXIO;}printk("解析GPIO信息成功\n");gpiono1=gpiod_get_from_of_node(dnode,"led1-gpio",0,GPIOD_OUT_LOW,NULL);if(IS_ERR(gpiono1)){printk("申请gpio对象失败\n");return -ENXIO;}printk("申请gpio信息对象成功\n");gpiono2=gpiod_get_from_of_node(dnode,"led2-gpio",0,GPIOD_OUT_LOW,NULL);if(IS_ERR(gpiono2)){printk("申请gpio对象失败\n");return -ENXIO;}printk("申请gpio信息对象成功\n");gpiono3=gpiod_get_from_of_node(dnode,"led3-gpio",0,GPIOD_OUT_LOW,NULL);if(IS_ERR(gpiono3)){printk("申请gpio对象失败\n");return -ENXIO;}printk("申请gpio信息对象成功\n");return 0;
out5://释放前一次提交成功的设备信息for(--i;i>=0;i--){device_destroy(cls,MKDEV(major,i));}class_destroy(cls);//释放目录
out4:cdev_del(cdev);
out3:unregister_chrdev_region(MKDEV(major,minor),3);
out2:kfree(cdev);
out1:return ret;
}
static void __exit mycdev_exit(void)
{//释放对象指针gpiod_put(gpiono1);gpiod_put(gpiono2);gpiod_put(gpiono3);/*销毁设备节点信息*/int i;for (i = 0; i < 3; i++){device_destroy(cls, MKDEV(major, i));}// 销毁目录信息class_destroy(cls);//注销驱动对象cdev_del(cdev);//释放设备号unregister_chrdev_region(MKDEV(major,minor),3);//释放对象空间kfree(cdev);// 取消地址映射iounmap(vir_led1);iounmap(vir_led2);iounmap(vir_rcc);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
4.Makefile
modname?=demo #给定一个默认的模块名
arch?=arm #给定一个架构的模块名
ifeq ($(arch),arm)#判断要编译的架构进而使用不同的Makefile规则进行编译
#定义变量存放内核源码顶层路径
KERNELDIR:= /home/ubuntu/FSMP1A/linux-stm32mp-5.10.61-stm32mp-r2-r0/linux-5.10.61 #用于编译生成ARM架构的模块
else
KERNELDIR := /lib/modules/$(shell uname -r)/build #用于生成x86架构的模块
endif#定义变量保存模块化编译的文件的路径
PWD:= $(shell pwd)
all:
#make modules是模块化编译的命令
#make -C $(KERNELDIR)表示读取KERNELDIR路径下的Makefile进行make编译
#M=$(PWD)指定模块化编译的路径make -C $(KERNELDIR) M=$(PWD) modules
clean: #编译清除make -C $(KERNELDIR) M=$(PWD) cleanobj-m:=$(modname).o #指定将demo.o独立链接生成内核模块文件
5.测试
1.make arch=arm modname=myled
2.arm-linux-gnueabihf-gcc main.c
3.cp a.out ~/nfs/rootfs
4.cp myled.ko ~/nfs/rootfs