【TCP】三次握手 与 四次挥手 详解

三次握手 与 四次挥手

  • 1. 三次握手
  • 2. 四次挥手
  • 三次握手和四次挥手的区别

在正常情况下,TCP 要经过三次握手建立连接,四次挥手断开连接

在这里插入图片描述

1. 三次握手

在这里插入图片描述

服务端状态转化:

  • [CLOSED -> LISTEN]
    服务器端调用 listen 后进入 LISTEN 状态,等待客户端连接;
  • [LISTEN -> SYN_RCVD]
    一旦监听到连接请求(同步报文段 SYN),就将该连接放入内核等待队列中,并向客户端发送 SYN + ACK 确认报文。
  • [SYN_RCVD -> ESTABLISHED]
    服务端一旦收到客户端的确认报文 ACK,就进入 ESTABLISHED 状态,可以进行读写数据了。

客户端状态转化:

  • [CLOSED -> SYN_SENT]
    客户端调用 connect,发送同步报文段 SYN;
  • [SYN_SENT -> ESTABLISHED]
    connect 调用成功,收到服务器的 SYN + ACK 报文段则进入 ESTABLISHED 状态,开始读写数据;

三次握手有啥用 ? 和可靠性有什么关系 ?

  1. 三次握手相当于 “投石问路”, 检查一下当前这个网络的情况是否满足可靠传输的条件。
    如果网络本身效果比较差,强行进行 TCP 传输,也会涉及到大量的数据丢包,更具体的说,三次握手是在检测通信双方的发送能力和接收能力是否都正常。
  2. 让通信双方能协商一些必要的信息,TCP 通信过程中,需要客户端和服务器之间有一些共同的信息,在三次握手过程中相互之间可以交互一些必要的内容。

举个栗子:
以打电话为例, 这个过程就是在检验通信双方的发送能力和接收能力:

在这里插入图片描述

假如说小明麦克风坏了,喂了几次没回应,就会重传,重试几次还没回应就放弃。

为啥是三次握手,两次行不行? 四次行不行 ?

  • 四次?行,但是没必要,分开传输不如合在一起效率高。
  • 两次 ?不行!两次,意味着缺少最后一次
  • 由上面的两张图就可以知道,两次的话,此时客户端知道双方的发送和接收能力都是正常的
  • 但是服务器这边是残缺的,不知道自己的发送能力和客户端的接收能力是否 OK
  • 此时服务器对于当下能否满足可靠传输心里没底
  • 这第三次交互就是为了给服务器吃一个定心丸。

2. 四次挥手

在这里插入图片描述

服务端状态转化:

  • [ESTABLISHED -> CLOSE_WAIT]
    当客户端主动关闭连接(调用 close),服务器会收到结束报文段 FIN ,服务器返回确认报文段 ACK 并进入 CLOSE_WAIT;
  • [CLOSE_WAIT -> LAST_ACK]
    进入 CLOSE_WAIT 后说明服务器准备关闭连接(需要处理完之前的数据);当服务器真正调用 close (用户代码中执行了 socket.close) 关闭连接时,会向客户端发送 FIN,此时服务器进入 LAST_ACK 状态,等待最后一个 ACK 到来(这个 ACK 是客户端确认收到了 FIN )
  • [LAST_ACK -> CLOSED]
    服务器收到了对 FIN 的 ACK,彻底关闭连接。

客户端状态转化:

  • [ESTABLISHED -> FIN_WAIT_1]
    客户端主动调用 close 时,向服务器发送结束报文段,同时进入 FIN_WAIT_1;
  • [FIN_WAIT_1 -> FIN_WAIT_2]
    客户端收到服务器对结束报文段的确认 ACK,则进入 FIN_WAIT_2,开始等待服务器的结束报文段;
  • [FIN_WAIT_2 -> TIME_WAIT]
    客户端收到服务器发来的结束报文段 FIN,进入 TIME_WAIT,并发出 LAST_ACK;
  • [TIME_WAIT -> CLOSED]
    客户端要等待一个 2MSL(Max Segment Life,报文最大生存时间)的时间,才会进入 CLOSED 状态。

为什么还要 TIME_WAIT ?
为的是给最后一次 ACK 提供重传机会,表面上 A 发送完 ACK 后就没有 A 的事了,按理说 A 可以销毁连接了,但是怕最后一个 ACK 丢包,若最后一个 ACK 丢了,那么 B 一定会因为没收到 ACK 重传 FIN,如果 A 已经销毁连接了,那么就无人能够处理这个 FIN 了,因此 A 不应该释放的太早,要等待一段时间,确保 B 不会重传 FIN 后再真正的销毁连接。

为什么是TIME_WAIT的时间是2MSL?

MSL 是 TCP 报文的最大生存时间,因此 TIME_WAIT 持续存在 2MSL 的话

  • 就能保证在两个传输方向上的尚未被接收或迟到的报文段都已经消失
    (否则立刻客户端立即重新创建连接时,可能会收到来自上一个进程的迟到的数据(FIN),但是这种数据很可能是错误的);
    在这里插入图片描述

  • 同时也是在理论上保证最后一个报文可靠到达
    (假设最后一个ACK丢失,那么服务器会再重发一个FIN。这时虽然客户端的进程不在了,但是 TCP 连接还在,仍然可以重发 LAST_ACK );

在这里插入图片描述

CLOSE_WAIT
一般而言,对于服务器上出现大量的 CLOSE_WAIT 状态,原因就是服务器没有正确的关闭 socket,没有执行到 socket.close 导致四次挥手没有正确完成。这是一个 BUG。只需要加上对应的 close 即可解决问题。

三次握手和四次挥手的区别

  1. 三次握手一定是客户端发起的(主动发起请求的一方叫做客户端)
    四次握手可能是客户端发起的,也有可能是服务器主动发起的

  2. 三次握手,中间有两次合并和,
    四次握手,中间两次合并不了,不能合并的原因在于 B (被动接收 FIN 的那一方)发送 ACK 和 FIN 的时机不同,
    <1> 四次挥手中,B 发送给 A 的 ACK 是由操作系统内核负责的(除了应用层,TCP/IP … 本身就是属于操作系统层面),那么意味着,当内核收到 FIN 后会立即返回 ACK (我们是感知不到的)
    <2> B 发送给 A 的 FIN,是由用户代码负责的,B 中代码调用了 socket.close() 方法时才触发 FIN 发送,所以要等到用户代码执行到 socket.close() 方法才触发,但是什么时候发送 取决于用户代码,若 <1> <2> 操作之间的时间差较大,就不能合并了,若时间差较小,由于 延时应带和捎带应答 机制,可能会合并。
    而三次握手中 B 发送的 ACK 和 SYN 都是由内核负责的,是同一时机所以能够合并。
    在这里插入图片描述

好啦! 以上就是对 TCP 三次握手 与 四次挥手的讲解,希望能帮到你 !
评论区欢迎指正 !

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/115384.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

input修改checkbox复选框默认选中样式

问题描述&#xff1a; <input type"checkbox" /> input修改checkbox默认选中样式&#xff0c;直接设置选中后的样式不生效&#xff0c;需要先给复选框设置-webkit-appearance: none&#xff08;取消默认样式&#xff09;&#xff0c; 再设置样式才会生效。 …

【lesson9】进程

文章目录 什么是进程如何管理进程查看进程创建子进程 什么是进程 我们用一张Windows下的任务管理器图来辅助我们观看&#xff0c;我们一个可以看到应用在运行的时候就是一个个进程。 所以我们启动了一个软件本质上就是启动了一个进程。 在Linux下运行一条命令&#xff0c;./XXX…

数据结构——单链表

目录 一.前言 二.链表表示和实现&#xff08;单链表&#xff09; 1.1 顺序表的优缺点 1.2 链表的概念及结构 1.3 打印函数 1.4 空间函数 1.5 尾插函数&#xff08;最最最麻烦的&#xff09; 1.5.1 尾插最关键部分&#xff01; 1.6 头插函数 1.7 尾删函数…

目标检测(Object Detection)概念速通

参考博文&#xff1a;目标检测&#xff08;Object Detection&#xff09;_YEGE学AI算法的博客-CSDN博客 这篇参考的相当多&#xff0c;写的真的很好很入门&#xff0c;觉得很有用&#xff0c;想详细了解的可以去看看&#xff0c;侵删↑ 上回组会分享了DETR和MDETR&#xff0c;…

启山智软/一款包含主流商城类型的一款电商中台系统100%开源

文章目录 介绍一、Smart Shop JAVA 微服务电商中台优势二、电商中台包含那些主流商城模式1.S2B2C供应链商城2.B2B2C多商户商城3.B2C单商户商城4.O2O外卖配送商城5.社区团购商城 6.演示地址总结 介绍 想要了解代码规范&#xff0c;学习商城解决方案&#xff0c;点击下方官网链接…

API(九)基于协程的并发编程SDK

一 基于协程的并发编程SDK 场景&#xff1a; 收到一个请求会并发发起多个请求,使用openresty提供的协程说明&#xff1a; 这个是高级课程,如果不理解可以先跳过遗留&#xff1a; APSIX和Kong深入理解openresty 标准lua的协程 ① 早期提供的轻量级协程SDK ngx.thread ngx…

Qt创建线程(线程池)

1.线程池可以创建线程统一的管理线程&#xff08;统一创建、释放线程&#xff09; 2.使用线程池方法实现点击开始按钮生成10000个随机数&#xff0c;然后分别使用冒泡排序和快速排序排序这10000个随机数&#xff0c;最后在窗口显示排序后的数字&#xff1a; mainwindow.h文件…

Lua学习笔记:探究package

前言 本篇在讲什么 理解Lua的package 本篇需要什么 对Lua语法有简单认知 对C语法有简单认知 依赖Visual Studio工具 本篇的特色 具有全流程的图文教学 重实践&#xff0c;轻理论&#xff0c;快速上手 提供全流程的源码内容 ★提高阅读体验★ &#x1f449; ♠ 一级…

#循循渐进学51单片机#指针基础与1602液晶的初步认识#not.11

1、把本节课的指针相关内容&#xff0c;反复学习3到5遍&#xff0c;彻底弄懂指针是怎么回事&#xff0c;即使是死记硬背也要记住&#xff0c;等到后边用的时候可以实现顿悟。学会指针&#xff0c;就是突破了C语言的一道壁垒。 2&#xff0c;1602所有的指令功能都应用一遍&#…

DA5 网站用户没有补全的信息

目录 1.题目描述 2.输入描述 3.输出描述 4.题目分析 5.通过代码 1.题目描述 现有一个Nowcoder.csv文件&#xff0c;它记录了牛客网的部分用户数据&#xff0c;包含如下字段&#xff08;字段与字段之间以逗号间隔&#xff09;&#xff1a; Nowcoder_ID&#xff1a;用户ID …

量子计算基础知识—Part1

1.什么是量子计算机&#xff1f; 量子计算机是基于量子力学原理构建的机器&#xff0c;采用了一种新的方法来处理信息&#xff0c;从而使其具有超强的功能。量子计算机使用Qubits处理信息。 2. 什么是量子系统&#xff1f; 一个量子系统指的是由量子力学规则描述和控制的物理…

ETHERNET IP站转MODBUS RTU协议网

产品介绍 JM-EIP-RTU是自主研发的一款ETHERNET/IP从站功能的通讯网关。该产品主要功能是将各种MODBUS-RTU设备接入到ETHERNET/IP网络中。 JM-EIP-RTU连接到ETHERNET/IP总线中做为从站使用&#xff0c;连接到MODBUS-RTU总线中做为主站或从站使用。 产品参数 技术参数 l 网关…