OpenCV(四十六):特征点匹配

1.特征点匹配的定义

       特征点匹配是一种在两幅图像中寻找相互对应的特征点,并建立它们之间的对应关系的过程。具体而言,首先通过特征检测算法在两幅图像中寻找相互对应的特征点,然后,对于每个特征点,通过描述子提取算法计算其描述子,最后,使用匹配算法对两组特征点的描述子进行比较,以找到相互匹配的特征点对。

2.DMatch() 用于表示特征点匹配的数据结构

cv::DMatch::DMatch ( int   queryldx,

int    _trainldx,

int     _imgldx,

float  _distance

)

  • queryIdx:查询描述子集合中的索引
  • trainIdx:训练描述子集合中的索引
  • imgldx:训练描述子来自的图像索引
  • distance:两个描述符之间的距离

3.特征点匹配类DescriptorMatcher的介绍

        在OpenCV中,特征点匹配的类主要是cv::DescriptorMatcherDescriptorMatcher是一个抽象基类,用于特征点描述子之间的匹配操作。

DescriptorMatcher类有以下常用方法和函数
   1.match():对两组特征描述子进行匹配,返回匹配结果(DMatch对象的向量)。

void cv::DescriptorMatcher::match ( InputArray  queryDescriptors,

InputArray    trainDescriptors,

std::vector< DMatch > & matches,

InputArray     mask = noArray()

)const

  • queryDescriptors:查询描述子集合
  • trainDescriptors: 训练描述子集合
  • matches:两个集合描述子匹配结果
  • mask:描述子匹配时的掩码矩阵,用于指定匹配哪些描述子
  2.knnMatch():对两组特征描述子进行k近邻匹配,返回每个查询描述子的k个最佳匹配结果。

void cv::DescriptorMatcher::knnMatch ( InputArray   queryDescriptors,

InputArray   trainDescriptors,

std::vector< std::vector< DMatch > > & matches,

int     k,

InputArray   mask = noArray(),

bool    compactResult = false

)const

  • queryDescriptors:查询描述子集合
  • trainDescriptors: 训练描述子集合
  • matches:描述子匹配结果
  • k:每个查询描述子在训练描述子集合中寻找的最优匹配结果的数目
  • mask:描述子匹配时的掩码矩阵,用于指定匹配哪些描述子。
  • compactResult:输出匹配结果数目是否与查询描述子数目相同的选择标志
  3.radiusMatch():对两组特征描述子进行半径匹配,返回每个查询描述子在指定半径内的最佳匹配结果。

void cv::DescriptorMatcher::radiusMatch ( InputArray   queryDescriptors,

InputArray    trainDescriptors,

std::vector< std::vector< DMatch > > &matches,

float     maxDistance,

InputArray    mask = noArray(),

bool   compactResult = false

)const

  • queryDescriptors:查询描述子集合
  • trainDescriptors: 训练描述子集合
  • matches:描述子匹配结果
  • maxDistance:两个描述子之间满足匹配条件的距离阀值
  • mask:描述子匹配时的掩码矩阵,用于指定匹配哪些描述子
  • compactResult:输出匹配结果数目是否与查询描述子数目相同的选择标志

4.特征点匹配函数BFMatcher()

BFMatcher():暴力匹配

cv::BFMatcher::BFMatcher ( int normType =ORM_L2,

bool crossCheck = false

)

  • normType:两个描述子之间距离的类型标志,可以选择的参数为NORM_LI、NORM_L2、NORM_HAMMING和NORM_HAMMING2。
  • crossCheck:是否进行交叉检测的标志。

5.显示特征点匹配结果函数drawMatches()

void cv::drawMatches ( InputArray   img1,

const std::vector< KeyPoint > & keypoints1,

InputArray    img2,

const std::vector< KeyPoint > & keypoints2,

const std::vector< DMatch > &matches1to2,

InputOutputArray        outlmg,

const Scalar &         matchColor = scalar: :all(-1),

const Scalar &         singlePointColor = scalar: :all(-1),

const std::vector<char>&   matchesMask = std: :vector< char >(),

 DrawMatchesFlags     flags = DrawMatchesFlags: :DEFAULT

)

  • imgl:第一张图像。
  • keypointsl:第一张图像中的关键点
  • img2:第二张图像。
  • keypoints2:第二张图像中的关键点。
  • matcheslto2:第一张图像中关键点与第二张图像中关键点的匹配关系。
  • outImg:显示匹配结果的输出图像。
  • matchColor:连接线和关键点的颜色。
  • singlePointColor: 没有匹配点的关键点的颜色
  • matchesMask:匹配掩码
  • flags:绘制功能选择标志

6.示例代码


void orb_fearures(Mat &gray,vector<KeyPoint> &keypoints,Mat &descriptions){Ptr<ORB> orb=ORB::create(1000,1.2f);orb->detect(gray,keypoints);orb->compute(gray,keypoints,descriptions);
}
void Matcher_f(Mat img1,Mat img2){//提取特征点vector<KeyPoint> keypoints1,keypoints2;Mat descriptions1,descriptions2;//计算特征点orb_fearures(img1,keypoints1,descriptions1);orb_fearures(img2,keypoints2,descriptions2);//特征点匹配vector<DMatch> matches;//定义存放匹配结果的变量BFMatcher matcher(NORM_HAMMING);//定义特征点匹配的类,使用汉明距离matcher.match(descriptions1,descriptions2,matches);//进行特征点匹配ostringstream ss;ss<<"matches="<<matches.size()<<endl;//匹配成功特征点数目//通过汉明距离删选匹配结果double min_dist=1000,max_dist=0;for(int i=0;i<matches.size();i++){double dist=matches[i].distance;if(dist<min_dist) min_dist=dist;if(dist>max_dist) max_dist=dist;}//输出所有匹配结果中最大韩明距离和最小汉明距离ss<<"min_dist="<<min_dist<<endl;ss<<"max_dist="<<max_dist<<endl;//将汉明距离较大的匹配点对删除vector<DMatch> good_matches;for(int i=0;i<matches.size();i++){if(matches[i].distance<=max(2*min_dist,20.0)){good_matches.push_back(matches[i]);}}ss<<"good_min="<<good_matches.size()<<endl;//剩余特征点数目LOGD("%s",ss.str().c_str());//绘制匹配结果Mat outimg,outimg1;drawMatches(img1,keypoints1,img2,keypoints2,matches,outimg);drawMatches(img1,keypoints1,img2,keypoints2,good_matches,outimg1);//显示结果imwrite("/sdcard/DCIM/outimg.png",outimg);//未筛选结果imwrite("/sdcard/DCIM/outimg1.png",outimg1);//最小汉明距离筛选}

未筛选的特征点匹配结果 :

最小汉明距离筛选特征点匹配结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/116131.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无需申请专线、无需改动网络,ERP/MES管理系统如何远程访问?

深圳市某模具公司作为一家以设计、制作五金模具、五金冲压、机加工件、加工经营为主的五金企业。为了实现更为高效的生产管理流程&#xff0c;引入了面向钣金/五金行业信息化建设的ERP/MES管理系统及方案&#xff0c;并将其部署在了企业总部的内网服务器。 除了总部访问需求外&…

【C刷题】day3

一、选择题 1、已知函数的原型是&#xff1a; int fun(char b[10], int *a); &#xff0c;设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xff09; A: fun(c,&d); B: fun(c,d); C: fun(&c,&d); D: fun(&c,d); 【答案…

如何防止商业秘密泄露(洞察眼MIT系统商业机密防泄密解决方案)

在当今的商业环境中&#xff0c;保护公司的商业秘密是至关重要的。商业秘密可能包括独特的业务流程、客户列表、研发成果、市场策略等&#xff0c;这些都是公司的核心竞争力。一旦这些信息被泄露&#xff0c;可能会对公司的生存和发展产生重大影响。本文将探讨如何通过使用洞察…

Spring boot原理

起步依赖 Maven的传递依赖 自动配置 Springboot的自动配置就是当spring容器启动后&#xff0c;一些配置类、bean对象就自动存入到IOC容器中&#xff0c;不需要我们手动去声明&#xff0c;从而简化了开发&#xff0c;省去了繁琐的配置操作。 自动配置原理&#xff1a; 方案一…

JavaWeb后端开发 JWT令牌解析 登录校验 通用模板/SpringBoot整合

目录 实现思路 会话跟踪的三个方案--引出Jwt令牌技术 1.访问cookie的值,在同一会话的不同请求之间共享数据 2.session 3.现代普遍采用的令牌技术--JWT令牌 JWT令牌技术 ​第一步--生成令牌 1.引入依赖 2.生成令牌 第二步--校验令牌 第三步--登录下发令牌 需要解决的…

AI人体行为分析:玩手机/打电话/摔倒/攀爬/扭打检测及TSINGSEE场景解决方案

一、AI人体行为分析技术概述及场景 人体姿态分析/行为分析/动作识别AI算法&#xff0c;是一种利用人工智能技术对人体行为进行检测、跟踪和分析的方法。通过计算机视觉、深度学习和模式识别等技术&#xff0c;可以实现对人体姿态、动作和行为的自动化识别与分析。 在场景应用…

【MySQL数据库事务操作、主从复制及Redis数据库读写分离、主从同步的实现机制】

文章目录 MySQL数据库事务操作、主从复制及Redis数据库读写分离、主从同步的实现机制ACID及如何实现事务隔离级别&#xff1a;MVCC 多版本并发控制MySQL数据库主从复制主从同步延迟怎么处理Redis 读写分离1.什么是主从复制2.读写分离的优点 Redis为什么快呢&#xff1f; MySQL数…

驱动开发,基于中断子系统完成按键的中断驱动,引入中断底半部

一.引入linux内核中断目的 引入linux内核中断之前&#xff0c;内核访问设备要不断轮询访问&#xff1b; 引入linux内核中断便于内核对设备的访问&#xff0c;当设备事件发生后主动通知内核&#xff0c;内核再去访问设备&#xff1b; 二.linux内核中断实现过程框图 根据软…

mall电商项目(学习记录1)

1.简介 mall项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现,采用Docker容器化部署。前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心、客户服务、帮助中心等模块。后台管理系统包含商品管理、订单管…

OpenGL之相机

OpenGL本身没有摄像机(Camera)的概念&#xff0c;但我们可以通过把场景中的所有物体往相反方向移动的方式来模拟出摄像机&#xff0c;产生一种我们在移动的感觉&#xff0c;而不是场景在移动。 本节我们将会讨论如何在OpenGL中配置一个摄像机&#xff0c;并且将会讨论FPS风格的…

laravel框架 - 消息队列如何使用

业务场景&#xff1a;项目里边有很多视频资源需要上传到抖音资源库&#xff0c;通过队列一条一条上传。 参考实例&#xff1a;发送邮件&#xff0c;仅供参考 (1)创建任务【生成任务类】 在你的应用程序中&#xff0c;队列的任务类都默认放在 app/Jobs 目录下。如果这个目录不存…

如何自动获取短信验证码?

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ 这篇文章通过解决实际项目开发中遇到的如何自动获取短信验证码的问题&#xff0c;进一步讲述在Java中如何使用正则。 Java中如何使用正则 Java中正则相关类位于java.util.r…