基于PLE结合卡尔曼滤波的RSSI定位算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

...............................................................
for Num_xb = Num_xb2Num_xbIndx = Indx + 1;Dis        = RoomLength/(Num_xb-1); for m=1:Stimesmrng(m);%生成节点坐标Position_X = (0.7*rand)*RoomLength;Position_Y = (0.7*rand)*RoomWidth;Position   = [Position_X,Position_Y];%计算节点到信标的距离for i=1:Num_xbXB(:,i)   = [i;(i-1)*Dis;0];Dist(:,i) = sqrt((Position_X-((i-1)*Dis))^2+Position_Y^2);end%基于RSS的定位算法  for i=1:Num_xbNumber_rssi(1,i) = i;%每个信标节点的RSSI值if Dist(i) > Good_radius  Number_rssi(2,i) = 0;elseNumber_rssi(2,i) = func_RSSI_cal(Dist(i),Alpha);endendNumber_rssi2 = Number_rssi;Number_rssi_save{m} = Number_rssi;Position_X2{m}      = Position_X;Position_Y2{m}      = Position_Y;%进行卡尔曼滤波%进行卡尔曼滤波%进行卡尔曼滤波tmps            = Number_rssi_save{m}(2,:);kalman_dat2{m}  = func_kalman(tmps); Number_rssi(1,:)= Number_rssi_save{m}(1,:);Number_rssi(2,:)= kalman_dat2{m};Position_X  = Position_X2{m};Position_Y  = Position_Y2{m};%将RSSI值从大到小排列  for i = 1:Num_xbfor j = i:Num_xbif Number_rssi(2,i) < Number_rssi(2,j)a = Number_rssi(1,j);b = Number_rssi(2,j);Number_rssi(2,j) = Number_rssi(2,i);Number_rssi(1,j) = Number_rssi(1,i);Number_rssi(1,i) = a;Number_rssi(2,i) = b;endendend%RSSI值最大的信标的距离for i=1:Best_xbDist(i) = Dis*( (func_RSSI_cal(Dis,Alpha)/Number_rssi(2,i))^(1/2.8) );end%求未知节点坐标for i=1:Best_xbBeaconn(1,i) = XB(2,Number_rssi(1,i));Beaconn(2,i) = XB(3,Number_rssi(1,i));endAll_num=Best_xb; for i=1:2for j=1:(All_num-1)a(i,j) = Beaconn(i,j)-Beaconn(i,All_num);endendA =-2*(a');for i=1:(All_num-1)B(i,1)=Dist(i)^2-Dist(All_num)^2-Beaconn(1,i)^2+Beaconn(1,All_num)^2-Beaconn(2,i)^2+Beaconn(2,All_num)^2;end%计算X坐标X1    = pinv(A'*A)*A'*B;X_pos = X1(1,1);%计算Y坐标z    = 0;for j=1:Best_xb    z = z + sqrt(abs(Dist(j)^2-(X_pos-Beaconn(1,j))^2));endY_pos = z/Best_xb;Loc = [X_pos;Y_pos];%点位误差error1(m) = sqrt((abs(Position_X-Loc(1)))^2+(abs(Position_Y-Loc(2)))^2);%横坐标误差error2(m) = abs(Loc(1)-Position_X);%纵坐标误差error3(m) = abs(Loc(2)-Position_Y);Number_rssis(:,m) = Number_rssi(2,:); endNumber_rssixb{Indx} = mean(Number_rssis,2);Number_xb{Indx}     = [1:Num_xb];
end
figure;
semilogy(Number_xb{1},Number_rssixb{1},'b-o');
grid on;
xlabel('信标数目');
ylabel('RSSI');
legend('信标数:30,RSSI排序后仿真图');
save result.mat Number_xb Number_rssixb
36_001m

4.算法理论概述

         基于PLE(Power-Law Equalizer)结合卡尔曼滤波的RSSI(Received Signal Strength Indicator)定位算法是一种利用无线信号强度进行位置估计的方法。该方法通过PLE算法对RSSI进行预处理,然后使用卡尔曼滤波器对处理后的数据进行位置和速度的估计。其整体流程图如下图所示:

一、基本原理

      PLE算法:PLE算法是一种用于提取信号特征的方法,它可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。PLE算法的核心思想是对接收到的信号强度进行幂次变换,将非线性关系转化为线性关系。具体公式如下:

Y = X^α

       其中,X表示接收到的信号强度,Y表示经过PLE处理后的信号强度,α为PLE算法的参数,需要根据实际环境进行调整。
      卡尔曼滤波器:卡尔曼滤波器是一种高效的递归滤波器,它可以通过对过去和现在的测量结果进行加权,估计未来的状态变量。在RSSI定位中,卡尔曼滤波器可以用于估计被定位物体的位置和速度。具体公式如下:

预测步骤:

X_pred = FX_est + BU
P_pred = FP_estF^T + Q

更新步骤:

Z_pred = HX_pred
Y = Z - Z_pred
K = P_pred
H^T*(HP_predH^T + R)^(-1)
X_est = X_pred + KY
P_est = (I - K
H)*P_pred

其中,X_est表示估计的状态变量(即位置和速度),P_est表示估计误差协方差矩阵,F表示状态转移矩阵,B表示控制输入矩阵,U表示控制输入变量,Z表示测量值,H表示观测矩阵,Q表示过程噪声协方差矩阵,R表示测量噪声协方差矩阵,K表示卡尔曼增益矩阵,Y表示测量残差,I表示单位矩阵。

二、算法流程

  1. 初始化:设定初始位置、速度、PLE算法的参数α、卡尔曼滤波器的参数(F、B、H、Q、R)等。
  2. PLE处理:对接收到的RSSI进行PLE处理,得到处理后的信号强度。
  3. 卡尔曼滤波:将处理后的信号强度作为测量值Z,使用卡尔曼滤波器进行位置和速度的估计。
  4. 更新估计值:根据卡尔曼滤波器的输出结果,更新估计的位置和速度。
  5. 迭代处理:重复执行步骤2-4,直到达到设定的迭代次数或收敛条件。
  6. 输出结果:输出最终估计的位置和速度。

三、优缺点

基于PLE结合卡尔曼滤波的RSSI定位算法具有以下优点:

  1. 可以削弱多径效应等干扰因素对RSSI的影响,提高位置估计的准确性。
  2. 通过对过去和现在的测量结果进行加权,可以减小测量噪声对位置估计的影响。
  3. 可以有效地利用RSSI的时空相关性,提高位置估计的稳定性。
  4. 具有较好的鲁棒性和适应性,可以适用于不同的环境和应用场景。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/116255.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

银行家算法——C语言实现

算法思路 将操作系统看作是银行家&#xff0c;操作系统所拥有的资源就相当于银行家所拥有的资产&#xff0c;进程向操作系统申请资源就相当于资产家向银行贷款&#xff0c;规定资产家在向银行贷款之前&#xff0c;先申明其所贷数额的最大值&#xff0c;申明之后其贷款的数额不…

【Verilog语法】比较不同计数器的运算方式,其中有一个数是延迟打一拍的效果,目的是使得两个计数器的结果相同。

比较不同计数器的运算方式&#xff0c;其中有一个数是延迟打一拍的效果&#xff0c;目的是使得两个计数器的结果相同。 1&#xff0c;第一种2&#xff0c;第二种3&#xff0c;第三种 第三种方案&#xff0c;完成实现。 1&#xff0c;第一种 &#xff08;1&#xff09;RTL modu…

深度学习自学笔记一:神经网络和深度学习

神经网络是一种模拟人脑神经元之间相互连接的计算模型&#xff0c;它由多个节点&#xff08;或称为神经元&#xff09;组成&#xff0c;并通过调整节点之间的连接权重来学习和处理数据。深度学习则是指利用深层次的神经网络进行学习和建模的机器学习方法。 假设有一个数据集&a…

SAP Service服务重注册技术手册

当SAP服务被卸载后,或SAP虚拟机整机copy后(可能还需要涉及主机名更改),需要对SAP服务重注册。 在路径 \sapmnt\<SID>\ DVEBMGS00\exe下使用程序sapstartsrv.exe来卸载、安装SAP服务: 其中<SID>、NR参考Service中需要卸载的服务名(卸载后,Services列表中的SA…

力扣刷题-链表理论基础

什么是链表 什么是链表&#xff0c;链表是一种通过指针串联在一起的线性结构&#xff0c;每一个节点由两部分组成&#xff0c;一个是数据域一个是指针域&#xff08;存放指向下一个节点的指针&#xff09;&#xff0c;最后一个节点的指针域指向null&#xff08;空指针的意思&a…

Android开发笔记 :理解Fragment

Android开发笔记&#xff1a;理解Fragment 导言 本篇文章产生的原因很简单&#xff0c;就是我在了解Android Jetpack中的Lifecycle框架时发现Lifecycle具体时间和状态的更新都是由一个名为ReportFragment的Fragment来跟踪的&#xff0c;为了更好的了解Fragment是如何追踪Activ…

从Python代码到诗

&#x1f433;序言 在Python社区&#xff0c;没有强制的编码标准&#xff0c;这虽然赋予了开发者更多的自由&#xff0c;但也导致代码风格不一致性。使得部分代码变得晦涩难懂&#xff0c;本文将探讨一系列的开发技巧和最佳实践&#xff0c;开发出优雅的Python脚本。 1、参数接…

基于AVR128单片机智能电风扇控制系统

一、系统方案 模拟的电风扇的工作状态有3种&#xff1a;自然风、常风及睡眠风。使用三个按键S1-S3设置自然风、常风及睡眠风。 再使用两个按键S4和S5&#xff0c;S4用于定时电风扇定时时间长短的设置&#xff0c;每按一次S4键&#xff0c;定时时间增加10秒&#xff0c;最长60秒…

iOS——present相关属性以及dismiss多级的方法

push和present 两者的区别 push: push由视图栈控制&#xff0c;每一个视图都入栈&#xff0c;调用之前的视图则需要出栈&#xff0c;可返回任意一层&#xff0c;一般用于同一业务不同界面之间的切换。 push是由UINavigationController管理的视图控制器堆栈&#xff0c;在wind…

vue项目打包优化

首先第一步通过浏览器看首次加载的问题大小&#xff0c;时间跨度等方面入手 1. Coverage观察 Coverage是chrome开发者工具的一个新功能&#xff0c;从字面意思上可以知道它是可以用来检测代码在网站运行时有哪些js和css是已经在运行&#xff0c;而哪些js和css是还没有用到的&a…

PID之Simulink仿真

昨天&#xff0c;在中南大学面试的老师&#xff0c;老师突然问到如何调PID&#xff0c;关于PID&#xff0c;我只知道一些基本概念&#xff0c;实际中并没有做过相关PID的项目&#xff0c;就连仿真也没搞过&#xff0c;所以今天就照着网上的教程做了PID的仿真&#xff0c;调PID的…

实现人工智能的去中心化,权力下放是最佳途径!

Web3和人工智能&#xff08;AI&#xff09;的交集&#xff0c;已成为加密社区中最热门的争论话题之一。毕竟&#xff0c;生成式AI正在彻底改变传统软件堆栈的所有领域&#xff0c;Web3也不例外。鉴于去中心化是Web3的核心价值主张&#xff0c;许多新兴的Web3生成AI项目和场景都…