Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)

在linux系统上进行多gpu卡的深度学习任务

  • 确保已安装最新的 TensorFlow GPU 版本。
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
  • 1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通过在命令行输入nvidia-smi来查看:
    在这里插入图片描述
    如果成功显示了类似上述的GPU信息和驱动版本信息,则说明NVIDIA驱动已经正确安装。

2、导入必要的库,设置可见的gpu设备列表:

import tensorflow as tf
# 设置可见的GPU设备列表(例如,使用GPU 0、1、2和3)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpu_devices, 'GPU')

在这里插入图片描述

  • 3、创建一个MirroredStrategy对象,该对象将自动复制模型和数据到每个可见的GPU卡上:
strategy = tf.distribute.MirroredStrategy()
  • 4、在strategy范围内创建和训练模型:
with strategy.scope():# 创建和编译模型model = create_model()model.compile(...)# 加载数据train_dataset = load_train_data()test_dataset = load_test_data()# 训练模型model.fit(train_dataset, validation_data=test_dataset, ...)

以上,在MirroredStrategy范围内创建的模型将自动复制并分布到每个可见的GPU卡上,每个卡都将处理一部分数据。

使用多个 GPU 的最佳做法是使用 tf.distribute.Strategy

以下给出一个官网的简单示例:

tf.debugging.set_log_device_placement(True)
gpus = tf.config.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy(gpus)
with strategy.scope():inputs = tf.keras.layers.Input(shape=(1,))predictions = tf.keras.layers.Dense(1)(inputs)model = tf.keras.models.Model(inputs=inputs, outputs=predictions)model.compile(loss='mse',optimizer=tf.keras.optimizers.SGD(learning_rate=0.2))

当然,也有手动的放置方法:

tf.debugging.set_log_device_placement(True)gpus = tf.config.list_logical_devices('GPU')
if gpus:# Replicate your computation on multiple GPUsc = []for gpu in gpus:with tf.device(gpu.name):a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])c.append(tf.matmul(a, b))with tf.device('/CPU:0'):matmul_sum = tf.add_n(c)print(matmul_sum)

在tensorflow上使用gpu:https://www.tensorflow.org/guide/gpu?hl=zh-cn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/120660.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习笔记:Huber Loss smooth L1 loss

1 Huber loss 1.1 介绍 Huber Loss是回归问题中的一种损失函数,它结合了均方误差MSE和绝对误差MAE的特点。 Huber Loss在误差较小的时候是平方损失,而在误差较大的时候是线性损失。因此,它在处理有噪声的数据时,尤其是存在离群点…

ElementUI之首页导航+左侧菜单

文章目录 一、Mock.js1.1.什么是Mock.js1.2.安装与配置1.3使用 二、登录注册跳转2.1.在views中添加Register.vue2.2.在Login.vue中的methods中添加gotoRegister方法2.3.在router/index.js中注册路由 三、组件通信(总线)3.1 在main.js中添加内容3.2.在com…

一篇博客学会系列(1) —— C语言中所有字符串函数以及内存函数的使用和注意事项

目录 1、求字符串长度函数 1.1、strlen 2、字符串拷贝(cpy)、拼接(cat)、比较(cmp)函数 2.1、长度不受限制的字符串函数 2.1.1、strcpy 2.1.2、strcat 2.1.3、strcmp 2.2、长度受限制的字符串函数 2.2.1、strncpy 2.2.2、strncat 2.2.3、strncmp 3、字符串查找函数…

Logistic map混沌掩盖信号

开学接触了一些有关混沌知识的学习,阅读量一些混沌通信的论文,对于混沌掩盖信号以确保加密通信有一定的兴趣。混沌的产生我选用的是logistic map映射产生混沌,主要就是一个递推公式: 对于这样一个式子,可以看出&#x…

南京大学【软件分析】13 Static Analysis for Security

文章目录 1. Information Flow Security2. Confidentiality and Integrity3. Explicit Flows and Covert/Hidden Channels4. Taint Analysis污点分析案例 1. Information Flow Security 引起安全问题最主要的两大原因是:injection errors(2013-2019排名…

django_auth_ldap登录权限

用户登录权限分为三种,通过is_active,is_staff,is_superuser标识。可以对组赋予对应的权限。 设定active组、staff组和superuser组分别对应三种权限。在不同组权限下的登录情况如下: 当用户不属于任何一组: 登录失败,提示如图&a…

BiMPM实战文本匹配【下】

引言 这是BiMPM实战文本匹配的第二篇文章。 注意力匹配 如上图所示,首先计算每个正向(或反向)上下文嵌入 h i p → \overset{\rightarrow}{\pmb h_i^p} hip​→​(或 h i p ← \overset{\leftarrow}{\pmb h_i^p} hip​←​)与另一句的每个正向(或反向)上下文嵌入 …

日常美食的食材与做法,小资生活从这一刻开始

一、教程描述 本套美食教程,大小14.86G,共有127个文件。 二、教程试看 樱桃肉的食材与做法,小资生活从这一刻开始 三、教程目录 芝士豆腐.mp4 炸猪排.mp4 炸鸡米花.mp4 元气早餐面.mp4 鱼香杏鲍菇.mp4 鱼头炖豆腐.mp4 油焖基围虾.m…

【面试题】2023前端面试真题之JS篇

前端面试题库 (面试必备) 推荐:★★★★★ 地址:前端面试题库 表妹一键制作自己的五星红旗国庆头像,超好看 世界上只有一种真正的英雄主义,那就是看清生活的真相之后,依然热爱生活。…

【C++】C++多态——实现、重写、抽象类、原理

​ ​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:C学习 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【C】C继…

Docker 容器跨主机通信 - Flannel

Author:rab 目录 前言一、架构及环境二、服务部署2.1 Etcd 部署2.2 Flannel 部署2.3 Docker 网络配置 三、容器通信验证及路由分析3.1 通信验证3.2 路由转发分析3.3 数据分发分析 总结 前言 今天是中秋佳节,首先在此祝大家“中秋快乐,阖家团…

分布式文件系统FastDFS实战

1. 分布式文件系统应用场景 互联网海量非结构化数据的存储需求: 电商网站:海量商品图片视频网站:海量视频文件网盘:海量文件社交网站:海量图片 2.FastDFS介绍 https://github.com/happyfish100/fastdfs 2.1简介 …