[C++ 网络协议] 重叠I/O模型

目录

1. 什么是重叠I/O模型

2. 重叠I/O模型的实现

2.1 创建重叠非阻塞I/O模式的套接字

2.2 执行重叠I/O的Send函数

2.3 执行重叠I/O的Recv函数

2.4 获取执行I/O重叠的函数的执行结果

2.5 重叠I/O的I/O完成确认

2.5.1 使用事件对象(使用重叠I/O函数的第六个参数)

2.5.2 使用Completion Routine函数(使用重叠I/O的第七个参数)

3. 用重叠I/O实现回声服务器端


1. 什么是重叠I/O模型

重叠I/O模型:

重叠I/O:同一线程内部向多个目标传输(或从多个目标接收)数据引起的I/O重叠现象

所以为了完成这一功能,要求套接字的I/O函数要立即返回,以便于后面的套接字的I/O处理。这就有点像是异步I/O模型。如图:

异步I/O模型: 

所以,从结果上来看,重叠I/O的前提条件就是异步I/O

非阻塞I/O、异步I/O、重叠I/O之间的关系:重叠I/O离不开异步I/O,异步I/O离不开非阻塞I/O,三者之间应该是层层递进的关系。

2. 重叠I/O模型的实现

重叠I/O的重点不在于I/O,因为只要是非阻塞I/O就都能调用并立即返回,我们要关注的是在I/O返回后,我们怎么确认它的执行结果怎么知道它什么时候读取/发送数据结束怎么知道它读取/发送了多少数据?这些问题。

2.1 创建重叠非阻塞I/O模式的套接字

#include<winsock2.h>SOCKET WSASocket(
int af,                                //协议族信息
int type,                              //套接字数据传输方式
int protocol,                          //使用的协议信息
LPWSAPROTOCOL_INFO lpProtocolInfo,     //包含创建的套接字信息的WSAPROTOCOL_INFO结构体变量地址值//不需要时传NULL
GROUP g,                               //为扩展函数而预约的参数,可以使用0
DWORD dwFlags                          //套接字属性信息
);
成功返回套接字句柄
失败返回INVALID_SOCKET

创建进行重叠I/O模式的套接字:

hSocket=WSASocket(PF_INET,SOCK_STREAM,IPPROTO_TCP,NULL,0,WSA_FLAG_OVERLAPPED);

第五个参数传WSA_FLAG_OVERLAPPED。 

将套接字改为非阻塞I/O模式:

int mode=1;
ioctlsocket(hSocket,FIONBIO,(u_long*)&mode);    //非阻塞I/O的设置

将hSocket句柄引用的套接字I/O模式(FIONBIO)改为变量mode中指定的形式。

当设置为非阻塞模式后:

  • 如果在没有客户端请求连接的情况下,调用accpet函数,将直接返回INVALID_SOCKET,调用WSAGetLastError函数,将返回WSAEWOULDBLOCK
  • 调用accpet函数时创建的套接字同样具有非阻塞属性。

所以如果针对非阻塞套接字调用accept函数时,要判断返回INVALID_SOCKET的理由。有可能是accpet函数未成功,也有可能是没有客户端请求连接。

2.2 执行重叠I/O的Send函数

#include<winsock2.h>int WSASend(
SOCKET s,     //套接字句柄
LPWSABUF lpBuffers,    //WSABUF结构体变量数组的地址值
DWORD dwBufferCount,   //第二个参数中数组长度
LPDWORD lpNumberOfBytesSent,    //保存实际发送字节数的变量地址值
DWORD dwFlags,    //用于更改数据传输特性,如传递MSG_OOB时发送OOB模式的数据
LPWSAOVERLAPPED lpOverlapped,    //WSAOVERLAPPED结构体变量地址值,使用事件对象,用于确认完成数据传输
LPWSAOVERLAPPED_COMPLETION_ROUTING lpCompletionRoutine //传入Completion Routine函数的入口//地址值,可以通过该函数确认是否完成数据传输
);
成功返回0
失败返回SOCKET_ERROR

第二个参数,lpBuffers:

struct __WSABUF
{u_long len;    //待传输数据大小char FAR* buf; //缓冲地址值
}WSABUF,*LPWSABUF;

第四个参数,lpNumberOfBytesSent:

填写了第四个参数会有如下两种情况:

        1.当传输数据不大,函数调用后可以立即完成数据传输时,WSASend函数将返回0,lpNumberOfBytesSent中保存实际传输的数据大小

        2.当传输数据过大,函数调用后不能立即完成数据传输时,WSASend函数将返回SOCKET_ERROR,并将WSA_IO_PENDING注册为错误代码。该代码通过函数WSAGetLastError函数得到:

#include<winsock2.h>int WSAGetLastError(void);
返回错误代码(表示错误原因)

第六个参数,lpOverlapped:

struct __WSAOVERLAPPED
{DWORD Internal;DWORD InternalHigh;DWORD Offset;DWORD offsetHigh;WSAEVENT hEvent;
}WSAOVERLAPPED,*LPWSAOVERLAPPED;

 其中Internal、InternalHigh成员是进行重叠I/O时操作系统内部使用成员,Offset、OffsetHigh是属于具有特殊用途的成员。所以只需关注hEvent成员,前四个成员置零即可。

注意:

        1.为了进行重叠I/O,WSASend函数的lpOverlapped参数中应该传递有效的结构体变量地址值,而不是NULL。否则,SOCKET s将以阻塞模式工作。

        2.向多个目标传输数据时,要分别构建lpOverlapped参数。但如果是同一个目标的接收/发送,就只需构建一次lpOvrelapped参数即可。

第七个参数, lpCompletionRoutine:

这是传入lpCompletionRoutine的函数原型:

void CALLBACK CompletionROUTING(
DWORD dwError,                    //写入错误信息,正常结束写入0
DWORD bdTransferred,              //写入实际收发的字节数
LPWSAOVERLAPPED lpOverlapped,     //写入WSASend\WSARecv函数的参数lpOverlapped
DWORD dwFlags                     //写入调用I/O时传入的特性信息或0
);

其中void返回值类型后面必须要有CALLBACK关键字

2.3 执行重叠I/O的Recv函数

#include<winsock2.h>int WSARecv(
SOCKET s,     //套接字句柄
LPWSABUF lpBuffers,    //WSABUF结构体变量数组的地址值
DWORD dwBufferCount,   //第二个参数中数组长度
LPDWORD lpNumberOfBytesSent,    //保存实际接收字节数的变量地址值
LPDWORD dwFlags,    //用于设置或读取数据传输特性,如接收MSG_OOB时发送的OOB模式的数据
LPWSAOVERLAPPED lpOverlapped,    //WSAOVERLAPPED结构体变量地址值,使用事件对象,用于确认完成数据接收
LPWSAOVERLAPPED_COMPLETION_ROUTING lpCompletionRoutine //传入Completion Routine函数的入口//地址值,可以通过该函数确认是否完成数据接收
);
成功返回0
失败返回SOCKET_ERROR

 这个和WSASend函数没什么区别。

2.4 获取执行I/O重叠的函数的执行结果

#include<winsock2.h>BOOL WSAGetOverlappedResult(
SOCKET s,                        //进行重叠I/O的套接字句柄
LPWSAOVERLAPPED lpOverlapped,    //进行重叠I/O时传递的WSAOVERLAPPED结构体变量的地址值
LPDWORD lpcbTransger,            //保存实际传输的字节数的变量地址值
BOOL fWait,                      //如果调用该函数仍在进行I/O,则//填TRUE时,等待I/O完成//填FALSE时,函数退出并返回FALSE
LPDWORD lpdwFlags                //调用WSARecv函数时,用于获取附加信息(如OOB消息)。//不需要,可以传NULL
);
成功返回TRUE
失败返回FALSE

可以获取实际的传输数据大小。同时还可以通过第四个参数验证接收数据的状态。

2.5 重叠I/O的I/O完成确认

2.5.1 使用事件对象(使用重叠I/O函数的第六个参数)

第六个参数:WSAOVERLAPPED结构体。

当重叠I/O完成时:

  • WSAOVERLAPPED结构体里的事件对象将变为signaled状态。
  • 验证I/O的完成结果需要调用WSAGetOverlappedResult函数。

如:

if(SOCKET_ERROR==WSASend(hSocket,&dataBuf,1,&sendBytes,0,&overlapped,NULL))
{if(WSAGetLastError()==WSA_IO_PENDING)    //说明数据还未传输完成{WSAWaitForMultipleEvents(1,&evObj,TRUE,WSA_INFINITE,FALSE);    //等待事件对象结束WSAGetOverlappedResult(hSocket,&overlapped,&sendBytes,FALSE,NULL); //得到结果}else{......}
}
//说明数据传输完成
......

2.5.2 使用Completion Routine函数(使用重叠I/O的第七个参数)

规则:只有请求I/O的线程处于alertable wait状态时才能调用Completion Routine函数

alertable wait状态指:等待接收操作系统消息的线程状态。

调用以下函数将进入alertable wait状态:

  • WaitForSingleObjectEx
  • WaitForMultipleObjectsEx
  • WSAWaitForMultipleEvents
  • SleepEx
  • WSA为前缀的上述函数

上述函数和去掉Ex的函数相同,只是上述函数增加了一个参数,为TURE那么就进入alertable wait状态,反之,则不进入。

为什么设定了这个规则?

因为:如果在执行重要任务时,突然调用Completion Routine函数,将破坏程序的正常执行流,所以要定义这个规则。

所以你可以在执行完重要任务后,调用上述任一函数,验证I/O完成与否,如果有已完成的I/O,则操作系统会调用响应的Completion Routine函数。调用结束后,上述函数会返回WAIT_IO_COMPLETION,并继续执行。

int main()
{......//进入alertable wait状态,调用CompRoutine函数int idx=WSAWaitForMultipleEvents(1,&evObj,FALSE,WSA_INFINITE,TRUE);if(inx==WAIT_TO_COMPLETION){}......
}void CALLBACK CompRoutine(......)
{......
}

使用Completion Routine方式的一个小知识点:

        使用Completion Routine就可以无需事件对象了,所以在WSASend/WSARecv的第六个参数填写WSAOVERLAPPED结构体时,里面的事件对象(hEvent),可以存储写入其他信息,这个数据类型会被传送到CALLBACK的函数里的第三个参数,此时直接对hEvent进行强制转换,就可以得到相应的信息了。

struct message
{......;
}
message msg;
overlapped.hEvent=(HANDLE)&msg;    //HANDLE是指针类型
//记住使用的是Completion Routine方式哦void CALLBACK Completion(DWORD error, DWORD transfer, LPWSAOVERLAPPED lpOverlapped, DWORD flags)
{message mesg=(message)(lpOverlapped->hEvent);......
}

3. 用重叠I/O实现回声服务器端

实现一:使用事件对象的方式来完成确认

这个比较简单,故省略。

实现二:使用Completion Routine的方式来完成确认

变量:

EventMessage结构体:用以存储连接的SOCKET套接字和对应客户端发送过来的消息内容。

为什么要创建一个这样的结构体?

因为:程序的运行是异步的,在while循环里,每连接一个客户端,SOCKET对应的客户端套接字变量,就会被重新赋值,就会导致写的RecvCompletion和SendCompletion函数里的SOCKET值会变化,这样发送的套接字就不正确了。所以必须要一个套接字对应一个客户端发送来的内容。

思路要点:

  1. 要保证客户端与服务器之间不只是发送一次数据,就要在RecvCompletion里面调用WSASend函数,在SendCompletion里面调用WSARecv函数,来达成循环。
  2. 使用EventMessage结构体,存储套接字和消息内容,把结构体地址值写入WSAOVERLAPPED的hEvent变量里,就可以在RecvCompletion和SendComplition里传递套接字和消息内容信息。
void CALLBACK RecvCompletion(DWORD error, DWORD transfer, LPWSAOVERLAPPED lpOverlapped, DWORD flags);
void CALLBACK SendCompletion(DWORD error, DWORD transfer, LPWSAOVERLAPPED lpOverlapped, DWORD flags);struct EventMessage
{WSABUF recvBuf;SOCKET client;
};int main()
{......//这里和方式一都是一样的while (1){SleepEx(100, TRUE);    //进入alertable wait状态sockaddr_in clientAddr;memset(&clientAddr, 0, sizeof(clientAddr));int clientAddrLen = sizeof(clientAddr);SOCKET client = accept(server, (sockaddr*)&clientAddr, &clientAddrLen);if (INVALID_SOCKET == client){if (WSAGetLastError() == WSAEWOULDBLOCK){std::cout << "没有客户端连接" << std::endl;}else{std::cout << "accept fail!" << std::endl;}continue;}EventMessage eventMsg;char buff[1024];eventMsg.recvBuf.buf = buff;eventMsg.recvBuf.len = sizeof(buff);eventMsg.client = client;WSAOVERLAPPED recvOverlapeed;memset(&recvOverlapeed, 0, sizeof(recvOverlapeed));recvOverlapeed.hEvent = (HANDLE)&eventMsg;DWORD recvLen;DWORD recvFlag=0;WSARecv(client, &eventMsg.recvBuf, 1, &recvLen, &recvFlag, &recvOverlapeed, RecvCompletion);}
}void CALLBACK RecvCompletion(DWORD error, DWORD transfer, LPWSAOVERLAPPED lpOverlapped, DWORD flags)
{if (error == 0)		//说明是正确结束{EventMessage eventMsg =*(EventMessage*)lpOverlapped->hEvent;int recvLen = transfer;	//获取接收的字节数if (recvLen == 0){std::cout << "客户端已断开!" << std::endl;closesocket(eventMsg.client);return;}std::cout << "客户端发来的信息:" << eventMsg.recvBuf.buf << std::endl;WSASend(eventMsg.client, &eventMsg.recvBuf, 1, &transfer, flags, lpOverlapped, SendCompletion);}
}void CALLBACK SendCompletion(DWORD error, DWORD transfer, LPWSAOVERLAPPED lpOverlapped, DWORD flags)
{if (error == 0){EventMessage eventMsg = *(EventMessage*)lpOverlapped->hEvent;char buff[1024];eventMsg.recvBuf.buf = buff;eventMsg.recvBuf.len = sizeof(buff);DWORD recvLen;DWORD recvFlag = 0;WSARecv(eventMsg.client, &eventMsg.recvBuf, 1, &recvLen, &recvFlag, lpOverlapped, RecvCompletion);}
}

执行结果:

因为是异步执行的,所以线程不会等待,会持续往下执行,当有消息传来时,就会执行Complition函数进行处理,线程不会阻塞住。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/120740.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java进阶篇--网络编程

计算机网络体系结构 计算机网络体系结构是指计算机网络中各个不同层次的协议和功能模块的组织结构。 什么是网络协议&#xff1f; 网络协议是计算机网络中用于通信和交换数据的规则和约定的集合。它定义了在网络中进行通信的各个实体&#xff08;如计算机、服务器、路由器等…

【超详细】Wireshark教程----Wireshark 分析ICMP报文数据试验

一&#xff0c;试验环境搭建 1-1 试验环境示例图 1-2 环境准备 两台kali主机&#xff08;虚拟机&#xff09; kali2022 192.168.220.129/24 kali2022 192.168.220.3/27 1-2-1 网关配置&#xff1a; 编辑-------- 虚拟网路编辑器 更改设置进来以后 &#xff0c;先选择N…

修改switch Nand无线区码 以支持高频5G 信道

环境&#xff1a;NS switch 问题&#xff1a;日版&#xff0c;港版无法连接大于44信道的5G WIFI 解决办法&#xff1a;修改PRODINFO.dec的WIFI 区域码 背景&#xff1a;我的switch是最早买的港版的一批&#xff0c;WIFI 只能连接日本的信道&#xff0c;家里的路由器是国行的&am…

WebGL笔记:绘制多个点,三角形,以及画各种不同的线条

绘制多点 1 &#xff09; WebGL 缓冲区 我们在用js定点位的时候&#xff0c;肯定是要建立一份顶点数据的&#xff0c;这份顶点数据是给着色器的&#xff0c;因为着色器需要这份顶点数据绘图然而&#xff0c;我们在js中建立顶点数据&#xff0c;着色器肯定是拿不到的&#xff…

50kw程控液冷阻性负载箱的优势和特点

程控液冷阻性负载箱是一种技术比较先进的测试设备&#xff0c;设备具有高效散热的特点&#xff0c;液冷技术能够快速有效地将热量从负载箱中散发出去&#xff0c;保持设备的稳定工作温度&#xff0c;相比传统的风冷方式&#xff0c;液冷能够更好地降低温度&#xff0c;提高散热…

crypto:大帝的密码武器

题目 下载zip之后可得到提示文本 结合题目名和文本提示可知&#xff0c;为凯撒密码 利用脚本&#xff0c;爆破位移的位数 str1 FRPHEVGL str2 str1.lower() num 1 for i in range(26):print("{:<2d}".format(num),end )for j in str2:if(ord(j)num > or…

Redis 数据结构

Redis 数据类型以及使用场景分别是什么&#xff1f; Redis 提供了丰富的 数据类型 &#xff0c; 常见的有五种数据类型&#xff1a;String(字符串)&#xff0c;Hash(哈希)&#xff0c;List(列表)、Set(集合)、Zset(有序集合)。 随着Redis 版本更新&#xff0c;后面又支持了四种…

数据结构之单链表

目录 前言&#xff1a; 链表的定义与结构 单链表的接口实现 显示单链表 创建新结点 单链表尾插 头插的实现简单示例图 尾插经典错误示例1 尾插经典错误示例2 尾插函数的最终实现 单链表头插 单链表尾删 单链表头删 单链表查找 单链表在pos位置之前插入数据x ​编…

【QT】QT事件Event大全

很高兴在雪易的CSDN遇见你 &#xff0c;给你糖糖 欢迎大家加入雪易社区-CSDN社区云 前言 本文分享QT中的事件Event技术&#xff0c;主要从QT事件流程和常用QT事件方法等方面展开&#xff0c;希望对各位小伙伴有所帮助&#xff01; 感谢各位小伙伴的点赞关注&#xff0c;小易…

长假,GPT来敲(Jué)门(Fén)

引 马上十一了&#xff0c;本拐在干了XX和XX事情以后&#xff0c;开始划水&#xff0c;欢天喜地的等放假。 然后&#xff0c;GPT4说更新了&#xff0c;据说加了一个读图的功能&#xff0c;本拐不以为然&#xff0c;不就是什么文生图&#xff0c;图生文么&#xff0c;TOOOLD。 不…

QT按钮介绍

目录 按钮基类 QAbstractButton QPushButton QToolButton QRadioButton QCheckBox 按钮基类 QAbstractButton 这是按钮的基类&#xff0c;它是继承QWidget类 它可对当前的图标&#xff0c;标题等进行设置。 它有自己的一些信号与槽函数&#xff1a; /* 当按钮被激活时(即…

HBase高阶(一)基础架构及存储原理

一、HBase介绍 简介 HBase是Hadoop生态系统中的一个分布式、面向列的开源数据库&#xff0c;具有高可伸缩性、高性能和强大的数据处理能力。广泛应用于处理大规模数据集。 HBase是一种稀疏的、分布式、持久的多维排序map 稀疏&#xff1a;对比关系型数据库和非关系型数据库&a…