【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式
FesianXu 20230928 at Baidu Search Team

前言

Prompt Tuning是一种PEFT方法(Parameter-Efficient FineTune),旨在以高效的方式对LLM模型进行下游任务适配,本文简要介绍Prompt Tuning方法,希望对读者有所帮助。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注明出处,谢谢。
∇ \nabla 联系方式:

e-mail: FesianXu@gmail.com

github: https://github.com/FesianXu

知乎专栏: 计算机视觉/计算机图形理论与应用(https://www.zhihu.com/column/c_1265262560611299328)

微信公众号:机器学习杂货铺3号店


众所周知,当前LLM是人工智能界的香饽饽,众多厂商和研究者都希望能够在LLM上进行应用推广和研究,这就难免需要对LLM进行下游任务的适配,最理想的情况当然是可以用私有数据,进行全网络端到端的微调。但是LLM现在参数量巨大,大部分都大于6B,有些甚至达到了100B以上,即便是端到端微调都需要大量的硬件资源。 PEFT(Parameter-Efficient FineTune)旨在最高效地引入参数,探索合适的训练方式,使得LLM适配下游任务的代价最小化,而本文提到的Prompt Tuning [1] 就是这样一个工作。

在介绍这个工作之前,我们得知道什么是prompt,关于prompt的内容之前在博文[2]中曾经介绍过,简单来说,就是用某种固定的模板或者范式,尝试去让LLM去适配下游任务,从在prompt中是否提供例子的角度上看,又可以分为one-shot prompt, few-shot prompt, zero-shot prompt等。但是,在文章[3]中提到过,不同的prompt模板对性能的影响巨大,如Fig 1.所示,我们也把这种prompt称之为硬提示词(hard-prompt)。既然有『硬』的,那么就肯定有『软』的prompt,soft-prompt指的是模型可以通过学习的方式去学习出prompt模板,经典工作包括P-Tuning [3], prefix prompt [4], soft prompt [5],以及本文将会介绍到的prompt tuning [1]。
different-prompt

Fig 1. 不同的prompt模板对性能影响巨大

如Fig 2.所示,在prompt tuning中,在原有hard prompt模板之前拼接了若干个可学习的token,我们用 P ∈ R p × d \mathbf{P} \in \mathbb{R}^{p \times d} PRp×d表示soft prompt部分,其中 p p p为拼接的token数量,用 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d 表示hard prompt部分。那么,完整的prompt可表示为 [ P ; X ] ∈ R ( p + n ) × d [\mathbf{P};\mathbf{X}] \in \mathbb{R}^{(p+n) \times d} [P;X]R(p+n)×d,模型的目标既变为了 P ( Y ∣ [ P ; X ] ) P(\mathbf{Y}|[\mathbf{P};\mathbf{X}]) P(Y[P;X])。此时,LLM的参数和embedding层的参数都是设置为不可学习的 (❄),整个网络只有soft prompt层是可学习的(🔥),这意味着微调模型需要的内存和计算代价都大大减小了 1

prompt-tuning-frame

Fig 2. prompt tuning在原有hard-prompt模板之前,拼接了若干个可学习的token,并将其视为soft-prompt。

只需要设置不同的soft prompt就可以适配不同的下游任务了,如Fig 3. 所示,在模型参数量足够大( ≥ 10 B \ge 10B 10B)的时候,采用prompt tuning的效果足以比肩全参数微调,而且所需参数量只有后者的万分之一,是名副其实的参数高效(Parameter-Efficient)方法。而不管在什么尺度的模型下,prompt tuning的结果都要远远优于hard prompt design的结果,人工设计的prompt模板确实很难与模型自己学习出来的竞争。
performance-curve

Fig 3. (a)在10B以上的模型中,采用prompt tuning的结果可以和全模型端到端微调的结果持平,(b)而prompt tuning增加的参数量只有全模型端到端微调的万分之一。

此外,作者在论文中还进行了更多实验去验证prompt tuning的有效性和其他特性。第一个就是soft prompt所需要的长度,如Fig 4. (a)所示,在10B模型下,20-100个soft token是一个比较合适的数量,20个token能提供最大的性价比。如何初始化这些新增的soft token embedding也是一个指的思考的问题,作者尝试了随机均匀初始化,从词表的embedding中采样,以及对于分类任务而言,用label的类别embedding进行初始化,如Fig 4. (b) 所示,随机初始化在模型参数量不够的时候(< 10B)表现,不如从词表采样和label初始化的方法,但当模型参数量足够大时,随机初始化的效果能够达到最好,优于从词表中采样的方法。考虑到本文采用的LLM是T5,而T5是一个encoder-decoder的结构,在设计预训练任务的时候采用的是span corruption + 哨兵token的形式,如:

Origin: Thank you for inviting me to your party last week
Corrupted: Thank you for [X] me to your party [Y] week
Target: [X] inviting [Y] last [Z]

这样设计预训练任务能实现encoder-decoder架构的T5高效预训练,但是这意味着模型没有见过自然语言的输入(因为输入总是有哨兵token,比如[X]/[Y]等),为了实现T5到LM的适配,在本文中作者尝试对T5进行了LM Adaptation的后训练:继续T5的少量预训练,给定自然文本作为输入,尝试预测自然语言的输出,而不是带有哨兵token的文本。 此外,作者还尝试了所谓的Span Corruption + 哨兵的方法,指的是在原T5模型基础上,在应用到下游任务预测时候,都给拼接上哨兵token,以减少下游任务和预训练任务的gap。如Fig 4. (C)所示,无论采用多大尺度的模型,采用了LM Adaptation能带来持续的增益,而Span Corruption或者Span Corruption+Sentinel的方法,则只在10B模型的尺度上能有比较好的效果(然而仍然无法超越前者)。那么LM Adaptation需要进行多少step的训练合适呢?在Fig 4. (d)中,作者进行了若干尝试,结果表明越多step将会带来越多的收益,最终作者选定在100k step。
more-research-exp

Fig 4. 对prompt tuning不同设置的探索实验。

采用prompt tuning还有一个好处就是可以让多个下游任务复用同一个LLM模型。在模型微调中,对于每个下游任务都需要维护一套独立的模型,如Fig 5. 左图所示,而在prompt tuning中,则只需要维护一套静态的LLM模型,不同任务通过不同的soft prompt进行区分即可激发LLM的不同下游任务能力,如Fig 5. 右图所示,因为可以节省很多资源,这对于部署来说很友好。
multi-task-same-model

Fig 5. 采用prompt tuning的方式,可以很方便的用同一个模型覆盖多个下游任务,实现资源节省。

Reference

[1]. Lester, Brian, Rami Al-Rfou, and Noah Constant. “The power of scale for parameter-efficient prompt tuning.” arXiv preprint arXiv:2104.08691 (2021). aka Prompt Tuning.
[2]. https://blog.csdn.net/LoseInVain/article/details/130500648, 《增强型语言模型——走向通用智能的道路?!?》
[3]. Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt understands, too. arXiv:2103.10385. aka p-tuning
[4]. Li, Xiang Lisa, and Percy Liang. “Prefix-tuning: Optimizing continuous prompts for generation.” arXiv preprint arXiv:2101.00190 (2021). aka prefix tuning
[5]. Qin, Guanghui, and Jason Eisner. “Learning how to ask: Querying LMs with mixtures of soft prompts.” arXiv preprint arXiv:2104.06599 (2021). aka soft prompt
[6].


  1. 由于将LLM的参数设置成为了不可学习,因此在反向过程中很多参数并不需要在显存中维护。假设模型的参数量为X,那么常用的Adam优化器的两个动量就不需要维护了(减少2X),激活值通过重计算技术,已经缩减了绝大部分,并且梯度只需要传递到soft prompt部分,而不需要进行参数更新,因此梯度也可以不维护(减少X),因此所需显存减少了3X,并且减少了对参数更新的计算量。 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/120845.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react项目优化

随着项目体积增大&#xff0c;打包的文件体积会越来越大&#xff0c;需要优化&#xff0c;原因无非就是引入的第三方插件比较大导致&#xff0c;下面我们先介绍如何分析各个文件占用体积的大小。 1.webpack-bundle-analyzer插件 如果是webpack作为打包工具的项目可以使用&…

超大表格组件滚动渲染优化

引用自 摸鱼wiki 背景 业务中需要渲染一个最多有100列的表格&#xff0c;由于表格使用原生dom实现&#xff0c;因此会出现同屏有近1000个单元格同时绘制&#xff0c;在快速滑动时页面会产生卡顿&#xff0c;影响用户体验。 方案 如下图所示&#xff0c;由于用户显示屏区域有…

ElementUI之首页导航及左侧菜单(模拟实现)

目录 ​编辑 前言 一、mockjs简介 1. 什么是mockjs 2. mockjs的用途 3. 运用mockjs的优势 二、安装与配置mockjs 1. 安装mockjs 2. 引入mockjs 2.1 dev.env.js 2.2 prod.env.js 2.3 main.js 三、mockjs的使用 1. 将资源中的mock文件夹复制到src目录下 2. 点击登…

蓝桥杯 题库 简单 每日十题 day11

01 质数 质数 题目描述 给定一个正整数N&#xff0c;请你输出N以内&#xff08;不包含N&#xff09;的质数以及质数的个数。 输入描述 输入一行&#xff0c;包含一个正整数N。1≤N≤10^3 输出描述 共两行。 第1行包含若干个素数&#xff0c;每两个素数之间用一个空格隔开&…

【切片】基础不扎实引发的问题

本次文章主要是来聊聊关于切片传值需要注意的问题&#xff0c;如果不小心&#xff0c;则很容易引发线上问题&#xff0c;如果不够理解&#xff0c;可能会出现奇奇怪怪的现象 问题情况&#xff1a; 小 A 负责一个模块功能的实现&#xff0c;在调试代码的时候可能不仔细&#x…

OpenAI 更新 ChatGPT:支持图片和语音输入【附点评】

一、消息正文 9月25日消息,近日OpenAI宣布其对话AI系统ChatGPT进行升级,添加了语音输入和图像处理两个新功能。据OpenAI透露,这些新功能将在未来两周内面向ChatGPT Plus付费用户推出,免费用户也将很快可以使用这些新功能。这标志着ChatGPT继续朝着多模态交互的方向发展,为用户提…

Lnmp架构之mysql数据库实战2

4、mysql组复制集群 一主多从的请求通常是读的请求高于写 &#xff0c;但是如果写的请求很高&#xff0c;要求每个节点都可以进行读写&#xff0c;这时分布式必须通过&#xff08;多组模式&#xff09;集群的方式进行横向扩容。 组复制对节点的数据一致性要求非常高&#xff…

EcmaScript标准-导入与导出-js

ECMAScript是一种由Ecma国际&#xff08;前身为欧洲计算机制造商协会&#xff0c;European Computer Manufacturers Association&#xff09;通过ECMA-262标准化的脚本程序设计语言。这种语言在万维网上应用广泛&#xff0c;它往往被称为JavaScript或JScript&#xff0c;所以它…

Cannot download sources

问题 Swagger的相关包&#xff0c;没法看到注释&#xff1b;源码也下载不了&#xff0c;会报下面的错误。 解决办法是&#xff0c;通过maven&#xff0c;重新下载jar包。 报错 Cannot download sources Sources not found for: io.swagger.core.v3:swagger-annotations:2.2.…

主从复制是怎么实现的?

单机模式的缺点 Redis虽然有持久化技术保证Redis奔溃后重启可以恢复数据&#xff0c;但是&#xff0c;单机模式下还是存在两方面问题。一方面Redis一旦宕机&#xff0c;数据恢复需要一定的时间&#xff0c;这段时间内&#xff0c;都不能接收和处理请求&#xff1b;另一方面&am…

【教程】Ubuntu自动查看有哪些用户名与密码相同的账户,并统一修改密码

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 目录 背景说明 开始操作 修改密码 背景说明 有些用户为了图方便或者初始创建用户默认设置等原因&#xff0c;会将密码设置为与用户名相同&#xff0c;但这就使得非常不安全。甚至如果该用户具有sudo权限&#…

云原生Kubernetes:Pod控制器

目录 一、理论 1.Pod控制器 2.Deployment 控制器 3.SatefulSet 控制器 4.DaemonSet 控制器 5.Job 控制器 6.CronJob 控制器 二、实验 1.Deployment 控制器 2.SatefulSet 控制器 3.DaemonSet 控制器 4.Job 控制器 5.CronJob 控制器 三、问题 1. showmount -e 报错…