sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验

课程1_第2周_测验题

目录:目录

第一题

1.神经元计算什么?

A. 【  】神经元计算激活函数后,再计算线性函数(z=Wx+b)

B. 【  】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

C. 【  】神经元计算一个函数g,它线性地缩放输入x(Wx+b)

D. 【  】神经元先计算所有特征的平均值,然后将激活函数应用于输出

答案:

B.【 √ 】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

第二题

2.以下哪一个是逻辑回归的损失函数?

A. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}| L(i)(y^(i),y(i))=y(i)y^(i)

B. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = m a x ( 0 , y ( i ) − y ^ ( i ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=max(0,y^{(i)} - \hat{y}^{(i)}) L(i)(y^(i),y(i))=max(0,y(i)y^(i))

C. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ 2 L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}|^2 L(i)(y^(i),y(i))=y(i)y^(i)2

D. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

答案:

D.【 √ 】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

第三题

3.假设img是一个(32, 32, 3)数组,表示一个32x32图像,它有三个颜色通道:红色、绿色和蓝色。如何将其重塑为列向量?

A. 【  】x = img.reshape((1, 32 * 32, 3))

B. 【  】x = img.reshape((32 * 32 * 3, 1))

C. 【  】x = img.reshape((3, 32 * 32))

D. 【  】x = img.reshape((32 * 32, 3))

答案:

B.【 √ 】x = img.reshape((32 * 32 * 3, 1))

第四题

4.考虑以下两个随机数组a和b:

a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

c的维度是什么?

A. 【  】c.shape = (3, 2)

B. 【  】c.shape = (2, 1)

C. 【  】c.shape = (2, 3)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (2, 3)

第五题

5.考虑以下两个随机数组a和b:

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a * b

c的维度是什么?

A. 【  】c.shape = (4, 3)

B. 【  】c.shape = (3, 3)

C. 【  】c.shape = (4, 2)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

D.【 √ 】计算不成立因为这两个矩阵维度不匹配

Note:运算符 “*” 说明了按元素乘法来相乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。

第六题

6.假设每个示例有 n x n_x nx个输入特性, X = [ X ( 1 ) , X ( 2 ) … , X ( m ) ] X=[X^{(1)},X^{(2)}…,X^{(m)}] X=[X(1)X(2),X(m)] X X X的维数是多少?

A. 【  】(m, 1)

B. 【  】(1, m)

C. 【  】( n x n_x nx, m)

D. 【  】(m, n x n_x nx)

答案:

C.【 √ 】( n x n_x nx, m)

第七题

7.np.dot(a,b)对a和b的进行矩阵乘法,而a * b执行元素的乘法,考虑以下两个随机数组a和b:

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a, b)

c的维度是什么?

A. 【  】c.shape = (12288, 150)

B. 【  】c.shape = (150, 150)

C. 【  】c.shape = (12288, 45)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (12288, 45)

第八题

8.请考虑以下代码段:

#a.shape = (3,4)  
#b.shape = (4,1)  
for i in range(3):  for j in range(4):  c[i][j] = a[i][j] + b[j]

如何将之矢量化?

A. 【  】c = a + d

B. 【  】c = a +b.T

C. 【  】c = a.T + b.T

D. 【  】c = a.T + b

答案:

B.【 √ 】c = a +b.T

Note:a的每一行元素,逐行相加b的每一行元素

第九题

9.请考虑以下代码段:

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a * b

c的维度是什么?

A. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是元素乘法,所以c.shape = (3, 3)

B. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是矩阵乘法,所以c.shape = (3, 3)

C. 【  】这个操作将一个3x3矩阵乘以一个3x1的向量,所以c.shape = (3, 1)

D. 【  】这个操作会报错,因为你不能用 * 对这两个矩阵进行操作,你应该用np.dot(a, b)

答案:

A.【 √ 】这会触发广播机制,b会被复制3次变成(3,3),而 * 操作是元素乘法,所以c.shape = (3, 3)

第十题

10.请考虑以下计算图:
在这里插入图片描述

输出J是?

A. 【  】J = (c - 1) * (b + a)

B. 【  】J = (a - 1) * (b + c)

C. 【  】J = a * b + b * c + a * c

D. 【  】J = (b - 1) * (c + a)

答案:

B.【 √ 】J = (a - 1) * (b + c)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/124487.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打字速度测试,生成您的打字速度证书?

趁着十一国庆之际,开发完成了打字侠的速度测试功能。我自己的打字速度约为56字/分钟,算是盲打中速度比较快的。下面是我的打字荣誉证书,欢迎大家免费测试自己的打字速度。 你也想来测试一下自己的打字速度吗? 打字侠速度测试地址…

一键智能视频编辑与视频修复算法——ProPainter源码解析与部署

前言 视频编辑和修复确实是随着电子产品的普及变得越来越重要的技能。有许多视频编辑工具可以帮助人们轻松完成这些任务如:Adobe Premiere Pro,Final Cut Pro X,Davinci Resolve,HitFilm Express,它们都提供一些视频修…

OpenCV 13(模版匹配和霍夫变换)

一、模版匹配 所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域…

Qt扩展-QCustomPlot绘图基础概述

QCustomPlot绘图基础概述 一、概述二、改变外观1. Graph 类型2. Axis 坐标轴3. 网格 三、案例1. 简单布局两个图2. 绘图与多个轴和更先进的样式3. 绘制日期和时间数据 四、其他Graph:曲线,条形图,统计框图,… 一、概述 本教程使用…

【C语言】函数的定义、传参与调用(二)

💗个人主页💗 ⭐个人专栏——C语言初步学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读: 1. 函数的嵌套调用 1.1 什么是嵌套调用 1.2 基础实现 1.3 调用流程解析 2. 函数的链式访问 2.1 …

《深度不确定条件下的决策:从理论到实践》PDF

制定未来计划时需要预测变化,尤其是制定长期计划或针对罕见事件的计划时。当这些变化存在高度不确定性的时候,这种预期就变得越来越困难。 今天给大家介绍的这本《深度不确定条件下的决策:从理论到实践》正是解决以上问题的良方。完整书籍文…

聊聊分布式架构——Http到Https

目录 HTTP通信协议 请求报文 响应报文 持久连接 状态管理 HTTPS通信协议 安全的HTTPS HTTP到HTTPS的演变 对称加密 非对称加密 混合加密机制 证书机构 SSL到底是什么 HTTPS是身披SSL外壳的HTTP HTTP通信协议 一次HTTP请求的通信流程:客户端浏览器通过…

GET 和 POST的区别

GET 和 POST 是 HTTP 请求的两种基本方法,要说它们的区别,接触过 WEB 开发的人都能说出一二。 最直观的区别就是 GET 把参数包含在 URL 中,POST 通过 request body 传递参数。 你可能自己写过无数个 GET 和 POST 请求,或者已经看…

【生物信息学】使用谱聚类(Spectral Clustering)算法进行聚类分析

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 3. IDE 三、实验内容 0. 导入必要的工具 1. 生成测试数据 2. 绘制初始数据分布图 3. 循环尝试不同的参数组合并计算聚类效果 4. 输出最佳参数组合 5. 绘制最佳聚类结果图 6. 代码整合 一、实验介绍…

黑马头条项目环境搭建

注册中心网关配置 spring:cloud:gateway:globalcors:add-to-simple-url-handler-mapping: truecorsConfigurations:[/**]:allowedHeaders: "*"allowedOrigins: "*"allowedMethods:- GET- POST- DELETE- PUT- OPTIONroutes:# 平台管理- id: useruri: lb://…

C++项目:【高并发内存池】

文章目录 一、项目介绍 二、什么是内存池 1.池化技术 2.内存池 3.内存池主要解决的问题 4.malloc 三、定长的内存池 四、高并发内存池整体框架设计 1.高并发内存池--thread cache 1.1申请内存: 1.2释放内存: 1.3用TLS实现thread cache无锁访…

HTTP协议,请求响应

、概述 二、HTTP请求协议 三、HTTP响应协议 四、请求数据 1.简单实体参数 RequestMapping("/simpleParam")public String simpleParam(RequestParam(name "name" ,required false ) String username, Integer age){System.out.println (username "…