机器学习(监督学习)笔记

目录

  • 总览
  • 笔记内容
    • 线性回归
      • 梯度下降
      • 特征缩放
      • 多输出线性回归
    • 逻辑回归
      • 二分类与逻辑回归
      • 分类任务的性能指标(召回率,精度,F1分数等)
      • 支持向量机SVM
      • K近邻
      • 朴素贝叶斯分类器
      • 朴素贝叶斯分类器进阶
      • 多分类逻辑回归
      • 二分类神经网络
      • 多分类神经网络
  • 代码部分
    • 实验一代码(批梯度,小批度,随机批度下降手撸)
    • 实验二 线性回归代码手撸(批梯度)
    • 实验三 线性回归代码手撸(随机批度)
    • 实验四 线性回归代码手撸(小批度)
    • 实验五 特征缩放手撸(标准化,归一化)
    • 实验八 线性回归二分类
    • 实验九 均方差(MSE)-逻辑回归模型
    • 实验九 均方差(MSE)-逻辑回归模型3D版本
    • 实验十 交叉熵-逻辑回归模型(R,P,F1)
    • 实验十一 scikit-learn SVM
    • 实验十二 SVM(错误率随C值变化)
    • 实验十三 K交叉验证-SVM
    • 实验十四 K近邻(K变化)-K交叉验证
    • 实验十五 宏F1值,马修斯相关系数
    • 实验十六 高斯朴素贝叶斯分类器
    • 实验十七 多分类逻辑回归
    • 二分类逻辑回归的不足
    • 二分类逻辑回归强化
    • 实验十八 二分类神经网络
    • 实验十九 多分类神经网络
  • 资源地址
    • 项目地址
  • 总结

总览

本文是机器学习的学习笔记(监督学习部分),全手撸了课程这部分的代码。
教材是《机器学习原理与实践》微课版,作者陈喆。

笔记内容

线性回归

在这里插入图片描述

梯度下降

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

特征缩放

在这里插入图片描述

多输出线性回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

逻辑回归

二分类与逻辑回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分类任务的性能指标(召回率,精度,F1分数等)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

支持向量机SVM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

K近邻

在这里插入图片描述
在这里插入图片描述

朴素贝叶斯分类器

在这里插入图片描述

朴素贝叶斯分类器进阶

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多分类逻辑回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二分类神经网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多分类神经网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码部分

实验一代码(批梯度,小批度,随机批度下降手撸)

#  实验2-1
# 批梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
ep = 20
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
RMSE2  = [] # 训练集
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1e =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14,w.transpose()) + b[0] - trainsyo # n*1RMSE2.append((np.dot(e,e.transpose())/tra)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(tra),e)/traw -= 2*xuexi*np.dot(e.transpose(),trainsy14)/tra
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE),min(RMSE2))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片

实验二 线性回归代码手撸(批梯度)

# 2-2
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[3] for i in data])# 选第三维作为输入特征
xuexi = 0.0001 # 学习率
ep = 20
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
allw = [] # 训练过程中的全部的w
allb = [] # 训练过程中的全部的b
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(1)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1newb = 0 # 求解的b的值newW = int() # 求解的w的值for i in range(tra): # 遍历全部的训练集a = np.dot(w,trainsy14[i].transpose()) + b[0] - trainsyo[i] # 计算(W*xT + b - y )newb += float(a) # 累加if type(newW) == int: newW = trainsy14[i].transpose()*float(a) # 初次赋值else:newW += trainsy14[i].transpose()*float(a) # 累加ww -= xuexi*newW * (2/tra) # 更新wb[0] -= xuexi*newb *2 / tra # 更新ballw.append(w[0])allb.append(b[0])
yall = []
xs= [-5,-3,--1,0,1,3,5] # x 轴模板
xall = [xs for i in range(ep)]
ymax = 0
ymin = 30
for i in range(ep):yall.append([allw[i]*t + allb[i] for t in xs])ymax = max(ymax,max(yall[i]))ymin  = min(ymin,min(yall[i]))
#绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
plt.xlabel('x') # 设置x坐标名称
plt.ylabel('y') # 设置y坐标名称
plt.title('拟合直线变化') # 设置标题
plots = []
for i in range(ep):c='r'if i == 0:c = 'b'elif i == ep -1:c = 'k'p, = plt.plot(xall[i],yall[i],color=c,marker='o',linestyle='dashed')plots.append(p)
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.legend((plots[0],plots[-1]),['start','end'])
plt.axis([-6,6,ymin-1,ymax+1]) # 设置xy的取值范围
plt.show() # 展示图片

实验三 线性回归代码手撸(随机批度)

# 2-3
# 随机梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
np.random.seed(100)
rng = np.random.default_rng()
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
ep = 200
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1newtra = [i for i in range(tra)]rd.shuffle(newtra)i = rd.choice(newtra)a = np.dot(w,trainsy14[i].transpose()) + b[0] - trainsyo[i] # 计算(W*xT + b - y )b[0] -=  2*xuexi*aw  -= 2*xuexi*trainsy14[i].transpose()*a # 初次赋值y = 0 # 中间变量用于存储RMSE每一轮的for i in range(tes): # y += (np.dot(w,testy14[i].transpose()) + b[0] - testyo[i])**2 # 计算均方根误差,并累加 RMSE.append((y/tes)**0.5)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片

实验四 线性回归代码手撸(小批度)

# 2-4
# 小批梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
batch = 30 # 设置批长度
ep = 20 # 设置遍历次数
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE2 = []
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1if not batch:breaktimes = tra // batchif tra % batch:times += 1for _ in range(times):starts = _*batchends = (_+1)*batchif (_+1)*batch >= tra:ends = trabatch = tra%batchif(not batch):breake =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14[starts:ends],w.transpose()) + b[0] - trainsyo[starts:ends] # n*1RMSE2.append((np.dot(e,e.transpose())/batch)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(batch),e)/batchw -= 2*xuexi*np.dot(e.transpose(),trainsy14[starts:ends])/batch
# 绘图部分
print(min(RMSE))
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(20)] # 设置x坐标 
RMSE = RMSE[:20]
ymax = max(RMSE[:20]) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([-2,len(RMSE)+ 6,0,ymax+3]) # 设置xy的取值范围
plt.show() # 展示图片

实验五 特征缩放手撸(标准化,归一化)

#2-5 
# 各种标准化
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
# 标准化
# mean = np.mean(y14,0) # 平均值
# stds = np.std(y14,0,ddof=1)
# y14 = (y14-mean)/stds
# 最小最大归一化
# maxs = np.amax(y14,0)
# mins = np.amin(y14,0)
# y14 = (y14 - mins)/(maxs-mins)
# 均值归一化
mean = np.mean(y14,0) # 平均值
maxs = np.amax(y14,0)
mins = np.amin(y14,0)
y14 = (y14-mean)/(maxs - mins)
xuexi = 0.1 # 学习率
ep = 2000
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
# w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
w =np.array([0.,0.,0.,0.])
# print(w)
# b = [rd.random()] # 初次随机获取偏差b
b = [0.]
RMSE = [] # 均方根误差
RMSE2 = [] # 训练集均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1e =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14,w.transpose()) + b[0] - trainsyo # n*1RMSE2.append((np.dot(e,e.transpose())/tra)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(tra),e)/traw -= 2*xuexi*np.dot(e.transpose(),trainsy14)/tra
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE),min(RMSE2))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',linestyle='dashed')
plt.plot(x,RMSE2,color='k',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片

实验八 线性回归二分类

# 2-8
# 线性回归对百分制成绩进行二分类
import numpy as np
import matplotlib.pyplot as plt
import random as rd
# parameters
dataset = 2 # index of training dataset
epoch = 2000
sdy = 0.0001
# datasets for training
if dataset == 1: # balanced datasetx_train = np.array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
elif dataset == 2: # unbalanced dataset 1x_train = np.array([0, 5, 10, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
elif dataset == 3: # unbalanced dataset 2x_train = np.array([0, 5, 10, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
w = np.array([0.]).reshape((1, -1))# 权重
b = np.array([0.])# 偏差
# 批梯度下降
for _  in range(epoch):e = np.dot(w,x_train) + b - y_train
#     print(e)b -= 2*sdy*np.dot(e,np.ones(m_train))/m_trainw -= 2*sdy*np.dot(x_train,e.transpose())/m_train
# 画图部分
yc = []
yy = []
lines = w[0][0]*60 + b[0] 
for i in x_train[0]:datas = w[0][0]*i + b[0]yy.append(datas)yc.append( 1 if datas >=  lines  else 0)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.xlabel('分数')
plt.ylabel('结果')
plt.plot(x_train[0],yy)
plt.scatter(x_train[0],yc)
plt.show()

实验九 均方差(MSE)-逻辑回归模型

# 2-9
# 均方误差代价函数->逻辑回归模型
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
y4 = np.array([i[5:] for i in data]) # 标注
y03 = np.array([i[:5] for i in data]) # 4维输入特征
# 标准化
mean = np.mean(y03,0) # 平均值
stds = np.std(y03,0,ddof=1) # 标准差
y03 = (y03-mean)/stds# 标准化完成
# 学习率
xuexi = 0.1
# 训练次数
epoch = 30000
# 区分训练集和测试集
m = len(data) # 样本总长度
__ = [i for i in range(m)]
tram = int(m*0.7) # 训练集长度
tesm = m - tram # 测试集长度
trainx = [] # 训练集输入特征
trainy = [] # 训练集标注
testx = [] # 测试集输入特征
testy = [] # 测试集标注
# 开始随机筛选训练集
for i in range(tram):_ = rd.choice(__)trainx.append(y03[_])trainy.append(y4[_])__.remove(_)
# 剩下的样本就是 测试集合
for i in __:testx.append(y03[i])testy.append(y4[i])
trainx,trainy,testx,testy= np.array(trainx),np.array(trainy),np.array(testx),np.array(testy) # list => np.array
# 设置权重w,和偏差b
w = np.array([0.,0.,0.,0.,0.]).reshape(1,-1)
b = np.array([0.]).reshape(1,-1)
REMS = []
for _ in range(epoch):y = -(np.dot(w,trainx.transpose()) + b) # -wTx + b,1*ny = 1/(1 + np.exp(y)) # 计算1/(1+e(-(wTx+b)))1*n e = y - trainy.transpose() # 计算 e  1*nw -= 2*xuexi*np.dot((y*(1-y)*e),trainx)/tram # 1*4 # 更新wb -= 2*xuexi*np.dot((y*(1-y)),e.transpose()) / tram # 更新b# 测试集REMS 计算y = -(np.dot(w,testx.transpose()) + b) # -wTx + b,1*n y = 1/(1 + np.exp(y)) # 1*n e = y - testy.transpose() # 1*na = np.dot(e,e.transpose())[0][0]/tesmREMS.append(a**0.5)# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
x = [i for i in range(epoch)]
print(min(REMS))
plt.plot(x,REMS,color='b',linestyle='dashed')
plt.xlabel('epoch')
plt.ylabel('REMS')
plt.title('训练情况')
plt.show()

实验九 均方差(MSE)-逻辑回归模型3D版本

# 3D图像展示2-9
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
y4 = np.array([i[5:] for i in data]) # 标注
y03 = np.array([i[:1] for i in data]) # 1维输入特征
# 标准化
mean = np.mean(y03,0) # 平均值
stds = np.std(y03,0,ddof=1) # 标准差
y03 = (y03-mean)/stds# 标准化完成
# 学习率
xuexi = 0.1
# 训练次数
epoch = 1000
# 区分训练集和测试集
m = len(data) # 样本总长度
__ = [i for i in range(m)]
tram = int(m*0.7) # 训练集长度
tesm = m - tram # 测试集长度
trainx = [] # 训练集输入特征
trainy = [] # 训练集标注
testx = [] # 测试集输入特征
testy = [] # 测试集标注
# 开始随机筛选训练集
for i in range(tram):_ = rd.choice(__)trainx.append(y03[_])trainy.append(y4[_])__.remove(_)
# 剩下的样本就是 测试集合
for i in __:testx.append(y03[i])testy.append(y4[i])
trainx,trainy,testx,testy= np.array(trainx),np.array(trainy),np.array(testx),np.array(testy) # list => np.array
# 设置权重w,和偏差b
w = np.array([10.]).reshape(1,-1)
b = np.array([0.]).reshape(1,-1)
REMS = []
Wchange=[] # w的变化过程
Bchange=[] # B的变化过程
for _ in range(epoch):y = -(np.dot(w,trainx.transpose()) + b) # -wTx + b,1*ny = 1/(1 + np.exp(y)) # 计算1/(1+e(-(wTx+b)))1*n e = y - trainy.transpose() # 计算 e  1*nw -= 2*xuexi*np.dot((y*(1-y)*e),trainx)/tram # 1*4 # 更新wb -= 2*xuexi*np.dot((y*(1-y)),e.transpose()) / tram # 更新b# 测试集REMS 计算y = -(np.dot(w,testx.transpose()) + b) # -wTx + b,1*n y = 1/(1 + np.exp(y)) # 1*n e = y - testy.transpose() # 1*na = np.dot(e,e.transpose())[0][0]/tesmREMS.append(a**0.5)Wchange.append(w[0][0])Bchange.append(b[0][0])# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
Wchange, Bchange=np.meshgrid(Wchange,Bchange)
_ = REMS[:]
REMS = np.array([_ for i in range(epoch)])
# 绘制3D曲面图
ax.plot_surface(Bchange, Wchange, REMS, cmap='viridis')# 设置图形属性
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
ax.set_title('3D Surface Plot')# 显示图形
plt.show()

实验十 交叉熵-逻辑回归模型(R,P,F1)

# 实验2-10
# 交叉熵代价函数
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
# 制作训练集和测试集
print(type(data))
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
print(data[:train_m,0:d].shape)
# 初始化权重w和偏差b
w ,b= np.random.rand(1,d),np.random.rand(1,1)
Data = []
def Confusion_matrix(a,b): # 计算召回率,精度,F!分数的函数b = b > 0.5allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))
#     FN = np.sum(b*(1-c))
#     TN = train_m - FP-allpR = TP/allpP = TP/(FP+TP)return R,P,2/(1/R + 1/P)
for _A_ in range(epoch):# 利用代价函数更新 w和 be = -(np.dot(w,train_X.transpose())+ b)e = 1/(1 + np.exp(e)) e -=  train_Y.transpose() # 1*train_mw -= xuexi*np.dot(e,train_X)/train_mb -= xuexi*np.dot(e,np.ones(train_m).transpose())/train_m# 计算交叉熵和召回率,精度以及F1分数# 训练集e = -(np.dot(w,train_X.transpose())+ b)N_Y = 1/(1 + np.exp(e))J = np.dot(np.log(N_Y),train_Y) +np.dot(np.log(1-N_Y),(1-train_Y)) R,P,F1 = Confusion_matrix(N_Y>=0.5,train_Y[:].transpose())_ = {"R":R,"P":P,"F1":F1,'J1':-J[0][0]/train_m}# 测试集e =  -(np.dot(w,test_X.transpose())+ b)N_Y = 1/(1 + np.exp(e))J = np.dot(np.log(N_Y),test_Y) +np.dot(np.log(1-N_Y),(1-test_Y))_['J2'] = -J[0][0]/test_m_['R1'],_['P1'],_['F11'] = Confusion_matrix(N_Y>=0.5,test_Y[:].transpose())Data.append(_)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x = [i for i in range(epoch)]
axes[0][0].plot(x,[i['J1'] for i in Data],color='r',linestyle='dashed',label='train')
axes[0][0].plot(x,[i['J2'] for i in Data],color='b',linestyle='dashed',label='test')
axes[0][0].legend()
axes[0][0].set_title('交叉熵')
axes[0][1].plot(x,[i['P'] for i in Data],color='r',linestyle='dashed',label='train')
axes[0][1].plot(x,[i['P1'] for i in Data],color='b',linestyle='dashed',label='test')
axes[0][1].legend()
axes[0][1].set_title('精度')
axes[1][0].plot(x,[i['F1'] for i in Data],color='r',linestyle='dashed',label='train')
axes[1][0].plot(x,[i['F11'] for i in Data],color='b',linestyle='dashed',label='test')
axes[1][0].set_title('F1分数')
axes[1][0].legend()
axes[1][1].plot(x,[i['R'] for i in Data],color='r',linestyle='dashed',label='train')
axes[1][1].plot(x,[i['R1'] for i in Data],color='b',linestyle='dashed',label='test')
axes[1][1].set_title('召回率')
axes[1][1].legend()
plt.tight_layout()
plt.show()

实验十一 scikit-learn SVM

# 2-11
# scikit-learn支持向量机
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call = [0.1,1,10,100,1000]
kernels = ['linear','poly','rbf']
data=[["线性核"],["多项式核"],["高斯核"]]
for i in Call:for j in kernels:clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4data[kernels.index(j)].append("%d(%d+%d)"%(te+ta,ta,te))
#         print("C=%f  核函数:%s %d(%d+%d)"%(i,j,te+ta,ta,te))
# 表格绘制
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
# print(data)
fig, ax = plt.subplots()
ax.axis('off')  # 隐藏坐标轴# 创建表格,设置文本居中
table = ax.table(cellText=data, colLabels=['核函数', 'C=0.1', 'C=1', 'C=10', 'C=100', 'C=1000'], cellLoc='center', loc='center')# 设置表格样式
table.auto_set_font_size(False)
table.set_fontsize(14)
table.scale(1.2, 1.2)  # 放大表格plt.show()

实验十二 SVM(错误率随C值变化)

# 2-12
# 错误随c的变化
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call =list(np.random.uniform(0.1, 16, 150))
Call.sort()
kernels = ['linear','poly','rbf']
tadata=[[],[],[]]
tedata=[[],[],[]]
for i in Call:for j in kernels:clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4tadata[kernels.index(j)].append(ta)tedata[kernels.index(j)].append(te)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x =Call
axes[0][0].plot(x,tadata[0],color='r',label='train',marker='x')
axes[0][0].plot(x,tedata[0],color='b',label='test',marker='o')
axes[0][0].legend()
axes[0][0].set_title('线性核')
axes[0][1].plot(x,tadata[1],color='r',label='train',marker='x')
axes[0][1].plot(x,tedata[1],color='b',label='test',marker='o')
axes[0][1].legend()
axes[0][1].set_title('多项式核')
axes[1][0].plot(x,tadata[2],color='r',label='train',marker='x')
axes[1][0].plot(x,tedata[2],color='b',label='test',marker='o')
axes[1][0].legend()
axes[1][0].set_title('高斯核心')
axes[1, 1].axis('off')# 隐蔽第四个
plt.tight_layout()
plt.show()

实验十三 K交叉验证-SVM

# 2-13
# k交叉验证 错误随c的变化
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
k = 4 # 重交叉验证k的值
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(100)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
alllines  = len(data)
train_m = int(alllines*((k-1)/k))
test_m = alllines - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
# train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call =list(np.random.uniform(0.1, 10, 25))
Call.sort()
kernels = ['linear','poly','rbf']
tadata=[[],[],[]]
tedata=[[],[],[]]
for i in Call:for j in kernels:tadata1=[]tedata1=[]id = kernels.index(j)for t in range(k):start = t*test_mends = (t+1)*test_m if ((t+1)*test_m ) <= alllines else alllinesif t == 0:train_X,train_Y= data[ends:alllines,0:d],data[ends:alllines,d:]elif t == 3:train_X,train_Y= data[0:start,0:d],data[0:start,d:]else:train_X,train_Y= np.concatenate((data[0:start,0:d],data[ends:alllines,0:d]),0),np.concatenate((data[0:start,d:],data[ends:alllines,d:]),0)test_X,test_Y=data[start:ends,0:d], data[start:ends:,d:]clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4tadata1.append(ta)tedata1.append(te)tadata[id].append(sum(tadata1)/k)tedata[id].append(sum(tedata1)/k)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x =Call
axes[0][0].plot(x,tadata[0],color='r',label='train',marker='x')
axes[0][0].plot(x,tedata[0],color='b',label='test',marker='o')
axes[0][0].legend()
axes[0][0].set_title('线性核')
axes[0][1].plot(x,tadata[1],color='r',label='train',marker='x')
axes[0][1].plot(x,tedata[1],color='b',label='test',marker='o')
axes[0][1].legend()
axes[0][1].set_title('多项式核')
axes[1][0].plot(x,tadata[2],color='r',label='train',marker='x')
axes[1][0].plot(x,tedata[2],color='b',label='test',marker='o')
axes[1][0].legend()
axes[1][0].set_title('高斯核心')
axes[1, 1].axis('off')# 隐蔽第四个
plt.tight_layout()
plt.show()

实验十四 K近邻(K变化)-K交叉验证

# 2-14
# 经典求解 k近邻
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
data=data.astype(np.float64)
# 随机排序
rng = np.random.default_rng(400)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] - 1
# 数据最大最小归一化处理
maxs = np.amax(data[:,0:d],0)
mins = np.amin(data[:,0:d],0)
data[:,0:d] = (data[:,0:d] - mins) / (maxs - mins)
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[]]
for i in kk:ta = 0te = 0for j in range(k):# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 计算距离ans = 0 # 测试集错误率 for t in range(len(test_x)):_ = np.sum((train_x-test_x[t])*(train_x-test_x[t]),1)# 得到全部的距离__ = np.argsort(_) # 排序for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]if test_y[t]  != stats.mode(_,keepdims=False)[0][0]:ans += 1te += ans
#         print(ans)# 计算距离ans = 0 # 测试集错误率 for t in range(len(train_x)):_ = np.sum((train_x-train_x[t])*(train_x-train_x[t]),1)# 得到全部的距离__ = np.argsort(_)for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]if train_y[t]  != stats.mode(_,keepdims=False)[0][0]:ans += 1ta += ansError[0].append(ta/k)Error[1].append(te/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(kk,Error[0],color='r',marker='o',label='train')
plt.plot(kk,Error[1],color='b',marker='x',label='test')
plt.legend()
plt.show()

实验十五 宏F1值,马修斯相关系数

# 2-15
# 马修斯相关系数计算 k近邻
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(100)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 数据最大最小归一化处理
maxs = np.amax(data[:,0:d],0)
mins = np.amin(data[:,0:d],0)
data[:,0:d] = (data[:,0:d] - mins) / (maxs - mins)
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[],[],[]]
# 求宏平均F1分数
for i in kk:ta,te,tta,tte = 0.,0.,0.,0.for j in range(k):tag_= []teg_= []# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 计算距离for t in range(len(test_x)):_ = np.sum((train_x-test_x[t])*(train_x-test_x[t]),1)# 得到全部的距离__ = np.argsort(_) # 排序for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]teg_.append(int(stats.mode(_,keepdims=False)[0][0]))# 计算距离teg_ = np.array(teg_).reshape(1,-1)for t in range(len(train_x)):_ = np.sum((train_x-train_x[t])*(train_x-train_x[t]),1)# 得到全部的距离__ = np.argsort(_)for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]tag_.append(int(stats.mode(_,keepdims=False)[0][0]))# 计算F1分数# 计算方法就是 测试集和训练集分别一个宏均F1分数,# 其次采用了k交叉验证,最终的F1分数是这k次计算结果的宏均F1的平均值tag_ = np.array(tag_).reshape(1,-1)def G(a,b):allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))if FP + TP == 0:return 0R = TP/allpP = TP/(FP+TP)if not P:return 0return 2/(1/R + 1/P)def getF1(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.return (G(a,a1)+G(b,b1)+G(c,c1)+G(d,d1))/4te += getF1(teg_,test_y.transpose())ta += getF1(tag_,train_y.transpose())# 计算马修斯相关系数def getMCC(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.A = len(li1[0])S = np.sum(a*a1)+np.sum(b*b1)+np.sum(c*c1)+np.sum(d*d1)h = np.array([np.sum(a) , np.sum(b) , np.sum(c) , np.sum(d)])l = np.array([np.sum(a1) , np.sum(b1),np.sum(c1) , np.sum(d1)])_ = A*S - np.sum(h*l)__ = ((A*A - np.sum(h*h))*(A*A-np.sum(l*l)))**0.5return  _/__tte += getMCC(teg_,test_y.transpose())tta += getMCC(tag_,train_y.transpose())Error[0].append(ta/k)Error[1].append(te/k)Error[2].append(tta/k)Error[3].append(tte/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].plot(kk,Error[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Error[1],color='b',linestyle='dashed',label='test',marker='o')
axes[0].legend()
axes[0].set_title('宏平均F1')
axes[1].plot(kk,Error[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].plot(kk,Error[3],color='b',linestyle='dashed',label='test',marker='o')
axes[1].legend()
axes[1].set_title('MCC')
plt.tight_layout()
plt.show()

实验十六 高斯朴素贝叶斯分类器

# 高斯朴素贝叶斯分类器 2-16
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[],[],[]]
# 求宏平均F1分数
for i in kk:ta,te,tta,tte = 0.,0.,0.,0.for j in range(k):tag_= []teg_= []# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 高斯朴素贝叶斯# 计算ujk 和 pckdef getUjkAndPck(lia,lib):ujk = np.array([[0. for _ in range(4)] for __ in range(d)]) # d *4 的矩阵,输入特征维度*类别总数times = [0 for _  in range (4)]for tt in range(len(lib)):kk = int(lib[tt])-1 # 得到的是 类别ujk[:,kk] += lia[tt]  #  注意横纵坐标的含义times[kk] += 1for _ in range(d):ujk[_] /= times return ujk,np.array(times)/len(lia)# 方差的无偏估计量def getOjk2(lia,lib,ujk):Ojk2 = np.array([[0. for _ in range(4)] for __ in range(d)])times  = [0 for i in range(4)]for _ in range(len(lib)):kk = int(lib[_])-1Ojk2[:,kk] += (lia[_] - ujk[:,kk])**2 # 注意横纵坐标的含义times[kk] += 1times = np.array(times)-1for _ in range(d):Ojk2[_] /= timesreturn Ojk2**0.5ujk,pck = getUjkAndPck(train_x,train_y.transpose()[0])Ojk2 = getOjk2(train_x,train_y.transpose()[0],ujk)# 测试集for _ in test_x:__ = (ujk.transpose() - _)/Ojk2.transpose()__ = __**2__ = np.log(pck)-0.5*np.sum(__,1) -np.sum(np.log(Ojk2).transpose(),1)teg_.append(np.argmax(__)+1)teg_ = np.array(teg_).reshape(1,-1)# 训练集for _ in train_x:__ = (ujk.transpose() - _)/Ojk2.transpose()__ = __**2__ = np.log(pck)-0.5*np.sum(__,1) -np.sum(np.log(Ojk2).transpose(),1)tag_.append(np.argmax(__)+1)tag_ = np.array(tag_).reshape(1,-1)# 计算F1分数# 计算方法就是 测试集和训练集分别一个宏均F1分数,# 其次采用了k交叉验证,最终的F1分数是这k次计算结果的宏均F1的平均值def G(a,b):allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))if FP + TP == 0:return 0R = TP/allpP = TP/(FP+TP)if not P:return 0return 2/(1/R + 1/P)def getF1(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.return (G(a,a1)+G(b,b1)+G(c,c1)+G(d,d1))/4te += getF1(teg_,test_y.transpose())ta += getF1(tag_,train_y.transpose())# 计算马修斯相关系数def getMCC(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.A = len(li1[0])S = np.sum(a*a1)+np.sum(b*b1)+np.sum(c*c1)+np.sum(d*d1)h = np.array([np.sum(a) , np.sum(b) , np.sum(c) , np.sum(d)])l = np.array([np.sum(a1) , np.sum(b1),np.sum(c1) , np.sum(d1)])_ = A*S - np.sum(h*l)__ = ((A*A - np.sum(h*h))*(A*A-np.sum(l*l)))**0.5return  _/__tte += getMCC(teg_,test_y.transpose())tta += getMCC(tag_,train_y.transpose())Error[0].append(ta/k)Error[1].append(te/k)Error[2].append(tta/k)Error[3].append(tte/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].plot(kk,Error[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Error[1],color='b',linestyle='dashed',label='test',marker='o')
axes[0].legend()
axes[0].set_title('宏平均F1')
axes[1].plot(kk,Error[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].plot(kk,Error[3],color='b',linestyle='dashed',label='test',marker='o')
axes[1].legend()
axes[1].set_title('MCC')
plt.tight_layout()
plt.show()

实验十七 多分类逻辑回归

# 多分类逻辑回归 2-17
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 样本长度
lens = data.shape[0]
# 设置训练次数
epochs = 5000
# 设置学习率
xuexi = 0.1
# 标准化处理
mean  = np.mean(data[:,:d],0)
stds = np.std(data[:,:d],0,ddof=1)
data[:,:d] = (data[:,:d]-mean)/stds
# 多分类逻辑回归
# 初始化 w,b
w = np.array([[rd.uniform(0,1) for __ in range(d)] for _ in range(4)]) # c * d
b = np.array([[rd.uniform(0,1) ] for _ in range(4)]) # c*1
# y-> one-hot
datay = np.array([[i==1.,i==2.,i==3.,i==4.] for i in data[:,d]])
# 划分数据集和测试集
train_m = int(lens*0.8)
test_m = lens - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],datay[:train_m],data[train_m:,:d],datay[train_m:]#  x:m*d,y:m*c
Errors = [[],[],[],[]]
for _ in range(epochs):# 更新w,b# 第一步计算 ZZ = np.dot(w,train_x.transpose()) + np.dot(b,np.ones(train_m).reshape(1,-1))# 计算 Y^_ = np.random.rand(4,4)>0 # c*c矩阵Y_ = np.exp(Z)/np.dot(_,np.exp(Z)) # c*m# 计算 EE = Y_ - train_y.transpose() # c*m# 计算多类别逻辑回归交叉熵TaJwb = np.trace(np.dot(train_y,np.log(Y_)))/-train_mErrors[2].append(TaJwb)# 统计训练集出错_ = np.argmax(Y_,0) + 1_ = _.astype(np.float64)_ -= data[:train_m,d]taer = np.sum(_ > 0)taer += np.sum(_ < 0)Errors[0].append(taer)# 统计测试集出错# 第一步计算 ZZ = np.dot(w,test_x.transpose()) + np.dot(b,np.ones(test_m).reshape(1,-1))# 计算 Y^_ = np.random.rand(4,4)>0 # c*c矩阵Y_ = np.exp(Z)/np.dot(_,np.exp(Z)) # c*m_ = np.argmax(Y_,0) + 1_ = _.astype(np.float64)_ -= data[train_m:,d]teer = np.sum(_ > 0)teer += np.sum(_ < 0)Errors[1].append(teer)# 更新w,bb -= np.dot(E,np.ones(train_m).reshape(-1,1))/train_mw -= np.dot(E,train_x)/train_m
# 绘图部分
print(Errors[0][-1],Errors[1][-1],Errors[2][-1])
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
kk = [i for i in range(epochs)]
axes[0].plot(kk,Errors[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Errors[1],color='b',linestyle='dashed',label='test',marker='x')
axes[0].legend()
axes[0].set_title('trainErrors')
axes[1].plot(kk,Errors[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].legend()
axes[1].set_title('交叉熵')
plt.tight_layout()
plt.show()

二分类逻辑回归的不足

# 二分类逻辑回归对其进行预测
import numpy as np
import random as rd
x_train = np.array([0, 5, 10, 25, 30, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))
y_train = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
# 第一步随机排序  (这里感觉不用)
epoch = 30000 # 训练次数
xuexi = 0.0001 # 学习率
# 设置权重和偏差
w = 0.
b = 0.
for _ in range(epoch):# 第一步计算eY_ = 1/(1+np.exp(-(w*x_train + b)))e = Y_ - y_train# 更新 w,bb -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw -= xuexi*np.dot(x_train,e.transpose())/m_train
# 绘图部分
Y =  1/(1+np.exp(-(w*x_train + b)))
print(Y)
# lines = 60*w + b
Y_= Y >= 0.5
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号kk = [i for i in range(epochs)]
plt.plot(x_train[0],Y[0],color='k',linestyle='dashed',label='train')
plt.plot(x_train[0],Y_[0],color='r',linestyle='dashed',label='predict')
plt.scatter(x_train,y_train[0],color='b',label='原本',marker='x')
plt.legend()
plt.title('变化')
plt.tight_layout()
plt.show()

二分类逻辑回归强化

# 二分类逻辑回归对其进行预测
# 强化
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
x_train = np.array([0, 5, 10, 25, 30, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))
y_train = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
# 第一步随机排序  (这里感觉不用)
epoch = 30000 # 训练次数
xuexi = 0.001 # 学习率
# 设置权重和偏差
# 标准化
x_train=x_train.astype(np.float64)
mean = np.mean(x_train,1)
stds = np.std(x_train,1,ddof=1)
x_train = (x_train - mean)/stds
w0,w1,w2,w3 = 0.,0.,0.,0.
b0,b1,b2,b3 = 0.,0.,0.,0.
for _ in range(epoch):# 第一步计算e0Y_ = 1/(1+np.exp(-(w0*x_train + b0)))e = Y_ - y_train# 更新 w0,b0b0 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw0 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e1Y_ = 1/(1+np.exp(-(w1*x_train + b1)+17.5))e = Y_ - y_train# 更新 w,bb1 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw1 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e2Y_ = 1/(1+np.exp(-(w2*x_train + b2)  - 42.5))e = Y_ - y_train# 更新 w,bb2 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw2 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e3Y_ = 1/(1+np.exp(-(w3*x_train + b3) + 60))e = Y_ - y_train# 更新 w,bb3 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw3 -= xuexi*np.dot(x_train,e.transpose())/m_train
# 绘图部分
Y0 = 1/(1+np.exp(-(w0*x_train + b0)))
Y1 = 1/(1+np.exp(-(w1*x_train + b1)+17.5))
Y2 = 1/(1+np.exp(-(w2*x_train + b2)-42.5))
Y3 = 1/(1+np.exp(-(w3*x_train + b3)+60))
Y_ = [-1 for i in range(m_train)]
Yx = Y1+Y2+Y3 -1 
# lines = 60*w + b
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(x_train[0],Y0[0],color='k',linestyle='dashed',label='原本的',linewidth=3)
plt.plot(x_train[0],Y1[0],color='#ec2d7a',linestyle='dashdot',label='17.5',linewidth=3)
plt.plot(x_train[0],Y2[0],color='g',linestyle='solid',label='-42.5',linewidth=3)
plt.plot(x_train[0],Y3[0],color='darkviolet',linestyle=(2,(1,2,3,4,2,2)),label='+60',linewidth=3)
plt.plot(x_train[0],Y_,color='r',linestyle='solid',label='-1',linewidth=3)
plt.plot(x_train[0],Yx[0],color='springgreen',linestyle='dotted',label='混合',linewidth=3)
plt.scatter(x_train,y_train[0],color='b',label='原本',marker='x')
plt.legend()
plt.title('变化')
plt.tight_layout()
plt.show()

实验十八 二分类神经网络

# 2-18
# 实现二分类神经网络
# 导入酒驾数据
# d = 5
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] -1
# 训练次数
epoch = 300000
# 学习率
XX = 0.00001
# 最大最小归一化
maxs = np.max(data[:,:d],0)
mins = np.min(data[:,:d],0)data[:,:d] = (data[:,:d]-mins)/(maxs-mins)
# mean  = np.mean(data[:,:d],0)
# stds = np.std(data[:,:d],0,ddof=1)
# data[:,:d] = (data[:,:d]-mean)/stds
# 训练集测试集划分
train_m = int(data.shape[0]*0.8)
test_m = data.shape[0] - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],data[:train_m,d:],data[train_m:,:d],data[train_m:,d:]
# train_x m*d, train_y  m*1, test_x m*d
# 设置隐含层节点数
n = 2
# 初始化初始权重w1  d*n和偏差 b1 n*1
w1 = np.array([[rd.uniform(0,1) for _ in range(n)] for __ in range(d)])
b1 = np.array([rd.uniform(0,1) for i in range(n)]).reshape(-1,1)
# 初始化初始权重 w2 n*1 和偏差 b2 是常数
w2 = np.array([rd.uniform(0,1) for _ in range(n)]).reshape(-1,1)
b2 = rd.uniform(0,1)
# 存储错误
Errors = [[],[]]
# 激活函数
def ReLU(x):global nreturn np.maximum(0, x).reshape(n,-1)
# 训练
for _ in range(epoch):# 求训练集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),train_x.transpose())  + np.dot(b1,np.ones(train_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 1*mZ2 = np.dot(w2.transpose(),A1) + b2# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = 1/(1+np.exp(-Z2))# 更新权重部分# e 计算 m*1e = predict_y.transpose() - train_ypredict_y ,train_y= predict_y.transpose()>=0.5,train_y >= 0.5Errors[0].append(np.sum(predict_y^train_y))# 更新 b1b1 -= XX*w2*np.dot(A1,e)/train_m# 更新 w1w1 -= XX*np.dot(train_x.transpose(),((np.dot(w2,e.transpose()))*A1).transpose())# 更新b2b2 -= XX*np.dot(np.ones(train_m).reshape(1,-1),e)/train_m# 更新 w2w2 -= XX*np.dot(A1,e)/train_m# 求测试集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),test_x.transpose())  + np.dot(b1,np.ones(test_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 1*mZ2 = np.dot(w2.transpose(),A1) + b2# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = 1/(1+np.exp(-Z2))# 更新权重部分 predict_y ,test_y= predict_y.transpose()>=0.5,test_y >= 0.5Errors[1].append(np.sum(predict_y^test_y))# 绘图部分
print(min(Errors[0]),min(Errors[1]))
X = [i+1 for i in range(epoch)]
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(X,Errors[1],color='k',linestyle='dashed',label='测试集错误',linewidth=3)
plt.plot(X,Errors[0],color='#ec2d7a',linestyle='dashdot',label='训练集错误',linewidth=3)
plt.legend()
plt.title('二分类神经网络')
plt.tight_layout()
plt.show()

实验十九 多分类神经网络

# 2-19
# 实现多分类神经网络
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
# d = 4
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
data=data.astype(np.float64)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] -1
# 训练次数
epoch = 3000
# 学习率
XX = 0.1
# 最大最小归一化
# maxs = np.max(data[:,:d],0)
# mins = np.min(data[:,:d],0)
# data[:,:d] = (data[:,:d]-mins)/(maxs-mins)
mean  = np.mean(data[:,:d],0)
stds = np.std(data[:,:d],0,ddof=1)
data[:,:d] = (data[:,:d]-mean)/stds
# 训练集测试集划分
train_m = int(data.shape[0]*0.8)
test_m = data.shape[0] - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],data[:train_m,d:],data[train_m:,:d],data[train_m:,d:]
train_y,test_y = train_y.transpose(),test_y.transpose()
train_y,test_y = np.array([train_y[0]==1.,train_y[0]==2.,train_y[0]==3.,train_y[0]==4.]),np.array([test_y[0]==1.,test_y[0]==2.,test_y[0]==3.,test_y[0]==4.])
# train_x m*d, train_y  c*m, test_x m*d
# 设置隐含层节点数
n = 3
# 初始化初始权重w1  d*n和偏差 b1 n*1
w1 = np.array([[rd.uniform(0,1) for _ in range(n)] for __ in range(d)])
b1 = np.array([rd.uniform(0,1) for i in range(n)]).reshape(-1,1)
# 初始化初始权重 w2 n*c 和偏差 b2 c*1
w2 = np.array([[rd.uniform(0,1) for _ in range(4)] for __ in range(n)])
b2 = np.array([rd.uniform(0,1) for i in range(4)]).reshape(-1,1)
# 存储错误
Errors = [[],[]]
# 激活函数
def ReLU(x):global nreturn np.maximum(0, x).reshape(n,-1)
# 训练
for _ in range(epoch):# 求训练集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),train_x.transpose())  + np.dot(b1,np.ones(train_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 c*mZ2 = np.dot(w2.transpose(),A1) + np.dot(b2,np.ones(train_m).reshape(1,-1))# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = np.exp(Z2)/np.dot(np.ones(4*4).reshape(4,4),np.exp(Z2))# 更新权重部分# E 计算 c*mE = predict_y - train_y# 统计错误e = np.argmax(predict_y,0)-np.argmax(train_y,0)Errors[0].append(np.sum(e*e))# 更新 b1
#     print('w2',w2.shape,'E',E.shape,'A1',A1.shape)b1 -= XX*np.dot(np.dot(w2,E)*A1,np.ones(train_m).reshape(-1,1))/train_m# 更新 w1w1 -= XX*np.dot(train_x.transpose(),(np.dot(w2,E)*A1).transpose())/train_m# 更新b2b2 -= XX*np.dot(E,np.ones(train_m).reshape(-1,1))/train_m# 更新 w2w2 -= XX*np.dot(A1,E.transpose())/train_m# 求测试集预测值部分Z1 = np.dot(w1.transpose(),test_x.transpose())  + np.dot(b1,np.ones(test_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 c*mZ2 = np.dot(w2.transpose(),A1) + np.dot(b2,np.ones(test_m).reshape(1,-1))# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = np.exp(Z2)/np.dot(np.ones(4*4).reshape(4,4),Z2)# 更新权重部分# 统计错误e = np.argmax(predict_y,0)-np.argmax(test_y,0)Errors[1].append(np.sum(e*e))# 绘图部分
print(min(Errors[0]),min(Errors[1]))
X = [i+1 for i in range(epoch)]
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(X,Errors[1],color='k',linestyle='dashed',label='测试集错误',linewidth=3)
plt.plot(X,Errors[0],color='#ec2d7a',linestyle='dashdot',label='训练集错误',linewidth=3)
plt.legend()
plt.title('多分类神经网络')
plt.tight_layout()
plt.show()

资源地址

项目地址

gitee地址

总结

全文代码均手撸。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/124731.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis与分布式-主从复制

接上文 常用中间件-OAuth2 1.主从复制 启动两个redis服务器。 修改第一个服务器地址 修改第二个redis 然后分别启动 redis-server.exe redis.windows.conf) 查看当前服务器的主从状态&#xff0c;打开客户端&#xff1a;输入info replication命令来查看当前的主从状态&am…

隐私交易成新刚需,Unijoin 凭什么优势杀出重围?

随着区块链技术的普及和发展&#xff0c;全球加密货币用户在持续增长&#xff0c;根据火币研究院公布的数据&#xff0c;2022年全球加密用户已达到 3.2亿人&#xff0c;目前全球人口总数超过了 80亿&#xff0c;加密货币用户渗透率已达到了 4%。 尤其是在 2020 年开启的 DeFi 牛…

麒麟信安服务器操作系统V3.5.2重磅发布!

9月25日&#xff0c;麒麟信安基于openEuler 22.03 LTS SP1版本的商业发行版——麒麟信安服务器操作系统V3.5.2正式发布。 麒麟信安服务器操作系统V3定位于电力、金融、政务、能源、国防、工业等领域信息系统建设&#xff0c;以安全、稳定、高效为突破点&#xff0c;满足重要行…

十四天学会C++之第二天(函数和库)

1. 函数的定义和调用 在C中&#xff0c;函数是组织和结构化代码的关键工具之一。它们允许您将一段代码封装成一个可重复使用的模块&#xff0c;这有助于提高代码的可读性和维护性。 为什么使用函数&#xff1f; 函数在编程中的作用不可小觑。它们有以下几个重要用途&#xf…

区块链3.0时代 基于GoMars构建的新概念TravelFi能否注入新力量?

区块链技术进入3.0时代 后疫情时代&#xff0c;全球数字化进程不断加快&#xff0c;世界范围内的移动通信、互联网技术及各类数字化应用的社会普及率也正在快速提升&#xff0c;疫情推动了互联网经济的增长&#xff0c;也让数字经济的价值开始显现。 数字经济一词的由来至今已经…

SpringBoot快速入门

搭建SpringBoot工程&#xff0c;定义hello方法&#xff0c;返回“Hello SpringBoot” ②导入springboot工程需要继承的父工程&#xff1b;以及web开发的起步依赖。 ③编写Controller ④引导类就是SpringBoot项目的一个入口。 写注解写main方法调用run方法 快速构建SpringBoo…

PG 多表连接查询

写法&#xff1a; 使用 select 表名.键名 from 表1 join表2 on 相同的主键 构造出来一张新表 多表要用表名.键名 才能知道是哪一张表 传统写法也行 类型&#xff1a; 内 而外的要这样写

OpenGL之光照贴图

我们需要拓展之前的系统,引入漫反射和镜面光贴图(Map)。这允许我们对物体的漫反射分量和镜面光分量有着更精确的控制。 漫反射贴图 我们希望通过某种方式对物体的每个片段单独设置漫反射颜色。我们仅仅是对同样的原理使用了不同的名字:其实都是使用一张覆盖物体的图像,让我…

计算机考研 | 2016年 | 计算机组成原理真题

文章目录 【计算机组成原理2016年真题44题-9分】【第一步&#xff1a;信息提取】【第二步&#xff1a;具体解答】 【计算机组成原理2016年真题45题-14分】【第一步&#xff1a;信息提取】【第二步&#xff1a;具体解答】 【计算机组成原理2016年真题44题-9分】 假定CPU主频为5…

Java基于SSM的校园一卡通系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

IDT 一款自动化挖掘未授权访问漏洞的信息收集工具

IDT v1.0 IDT 意为 Interface detection&#xff08;接口探测) 项目地址: https://github.com/cikeroot/IDT/该工具主要的功能是对批量url或者接口进行存活探测&#xff0c;支持浏览器自动打开指定的url&#xff0c;避免手动重复打开网址。只需输入存在批量的url文件即可。 …

强化学习环境 - robogym - 学习 - 1

强化学习环境 - robogym - 学习 - 1 项目地址 https://github.com/openai/robogym 为什么选择 robogym 自己的项目需要做一些机械臂 table-top 级的多任务操作 robogym 基于 mujoco 搭建&#xff0c;构建了一个仿真机械臂桌面物体操作&#xff08;pick-place、stack、rearr…