sheng的学习笔记-【中英】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第四周测验

课程1_第4周_测验题

目录:目录

第一题

1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么?

A. 【  】它用于在训练期间缓存成本函数的中间值。

B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传播计算导数的有用值。

C. 【  】它用于跟踪我们正在搜索的超参数,以加快计算速度。

D. 【  】我们用它将反向传播过程中计算的变量传递到相应的正向传播步骤。它包含用于计算正向传播的激活的有用值。

答案:

B.【 √ 】我们用它传递前向传播中计算的变量到相应的反向传播步骤,它包含用于计算导数的反向传播的有用值。

note:“cache” 记录来自正向传播单元的值并将其发送到反向传播单元,因为需要链式计算导数。

第二题

2.以下哪些是“超参数”?(选出所有正确项)

A. 【  】隐藏层规模 n [ l ] n^{[l]} n[l]

B. 【  】神经网络的层数 L L L

C. 【  】激活向量 a [ l ] a^{[l]} a[l]

D. 【  】权重矩阵 W [ l ] W^{[l]} W[l]

E. 【  】学习率 α \alpha α

F. 【  】迭代次数

G. 【  】偏置向量 b [ l ] b^{[l]} b[l]

答案:

A.【 √ 】隐藏层规模 n [ l ] n^{[l]} n[l]

B.【 √ 】神经网络的层数 L L L

E.【 √ 】学习率 α \alpha α

F.【 √ 】迭代次数

第三题

3.下列哪个说法是正确的?

A. 【  】神经网络的更深层通常比前面的层计算更复杂的特征。

B. 【  】神经网络的前面的层通常比更深层计算更复杂的特性。

答案:

A.【 √ 】神经网络的更深层通常比前面的层计算更复杂的输入特征。

第四题

4.向量化允许您在L层神经网络中计算前向传播时,不需要在层l = 1, 2, …, L间显式的使用for循环(或任何其他显式迭代循环),正确吗?

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

note:在层间计算中,我们不能避免for循环迭代。

第五题

5.假设我们将 n [ l ] n ^ {[l]} n[l]的值存储在名为layers的数组中,如下所示:layer_dims = [n_x, 4, 3, 2, 1]。 因此,第1层有4个隐藏单元,第2层有3个隐藏单元,依此类推。 您可以使用哪个for循环初始化模型参数?

for(i in range(1, len(layer_dims/2))):parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims/2))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i-1], layers[i]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

答案:

D.【 √ 】

for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

Note:矩阵运算,W矩阵与X特征向量相乘,W矩阵的列数与X特征向量的个数相等。

第六题

6.考虑以下神经网络,该神经网络有几层?
在这里插入图片描述

A. 【  】L层数是4,隐藏层数是3

B. 【  】L层数是3,隐藏层数是3

C. 【  】L层数是4,隐藏层数是4

D. 【  】L层数是5,隐藏层数是4

答案:

A.【 √ 】层数L为4,隐藏层数为3。

note:正如图中所看到的那样,层数被计为隐藏层数+1。输入层和输出层不计为隐藏层。

第七题

7.在前向传播期间,在层 l l l的前向传播函数中,您需要知道层 l l l中的激活函数(Sigmoid,tanh,ReLU等)是什么。在反向传播期间,相应的反向传播函数也需要知道第 l l l层的激活函数是什么,因为梯度是根据它来计算的。

A. 【  】对

B. 【  】不对

答案:

A.【 √ 】对

note:在反向传播期间,您需要知道正向传播中使用哪种激活函数才能计算正确的导数。

第八题

8.有一些函数具有以下特性:

(i) 当使用浅网络计算时,需要一个大网络(我们通过网络中的逻辑门数量来度量大小)。

(ii) 但是当使用深网络来计算时,我们只需要一个指数级小的网络。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

第九题

9.在以下2层隐藏层的神经网络中,以下哪句话是正确的?
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C. 【  】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D. 【  】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E. 【  】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F. 【  】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

答案:

A.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E.【 √ 】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F.【 √ 】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

第十题

10.前面的问题使用了一个特定的网络,一般情况下,层 l l l的权重矩阵 W [ l ] W^{[l]} W[l]的维数是多少?

A. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

B. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l − 1 ] , n [ l ] ) (n^{[l-1]},n^{[l]}) (n[l1],n[l])

C. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l + 1 ] , n [ l ] ) (n^{[l+1]},n^{[l]}) (n[l+1],n[l])

D. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l + 1 ] ) (n^{[l]},n^{[l+1]}) (n[l],n[l+1])

答案:

A.【 √ 】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125382.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 2 篇:数据的表示和运算

前言 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术…

目标检测算法改进系列之Backbone替换为NextViT

NextViT介绍 由于复杂的注意力机制和模型设计,大多数现有的视觉Transformer(ViTs)在现实的工业部署场景中不能像卷积神经网络(CNNs)那样高效地执行,例如TensorRT 和 CoreML。这带来了一个明显的挑战&#…

iPhone苹果手机复制粘贴内容提示弹窗如何取消关闭提醒?

经常使用草柴APP查询淘宝、天猫、京东商品优惠券拿购物返利的iPhone苹果手机用户,复制商品链接后打开草柴APP粘贴商品链接查券时总是弹窗提示粘贴内容,为此很多苹果iPhone手机用户联系客服询问如何关闭iPhone苹果手机复制粘贴内容弹窗提醒功能的方法如下…

设计加速!11个Adobe XD插件推荐!

你是否一直在寻找可以提升 Adobe XD 工作流程和体验的方法?如果是,一定要试试这些 Adobe XD 插件!本文将介绍 11 款好用的 Adobe XD 插件,这些插件可以为 UI/UX 设计添加很酷的新功能,极大提升你的工作效率和产出。让我…

Linux多线程网络通信

思路:主线程(只有一个)建立连接,就创建子线程。子线程开始通信。 共享资源:全局数据区,堆区,内核区描述符。 线程同步不同步需要取决于线程对共享资源区的数据的操作,如果是只读就不…

代码随想录第35天 | ● 01背包问题,你该了解这些! ● 01背包问题—— 滚动数组 ● 416. 分割等和子集

01背包 题目 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 代码 function testWeightBagProblem (weight, value, size) {// 定义 d…

天地无用 - 修改朋友圈的定位: 高德地图 + 爱思助手

1,电脑上打开高德地图网页版 高德地图 (amap.com) 2,网页最下一栏,点击“开放平台” 高德开放平台 | 高德地图API (amap.com) 3,在新网页中,需要登录高德账户才能操作。 可以使用手机号和验证码登录。 4&#xff0c…

消息队列RabbitMQ

一、什么是消息队列 消息指的是两个应用间传递的数据。数据的类型有很多种形式,可能只包含文本字符串,也可能包含嵌入对象。 “消息队列(Message Queue)”是在消息的传输过程中保存消息的容器。在消息队列中,通常有生产者和消费者两个角色。生…

Android自定义Drawable---灵活多变的矩形背景

Android自定义Drawable—灵活多变的矩形背景 在安卓开发中,我们通常需要为不同的按钮设置不同的背景以实现不同的效果,有时还需要这些按钮根据实际情况进行变化。如果采用编写resource中xml文件的形式,就需要重复定义许多只有微小变动的资源…

C++lambda表达式

Clambda表达式 捕获方式 值捕获 lambda表达式值捕获的变量在lambda函数体内部不可修改,只可读 引用捕获 lambda表达式可以引用捕获变量、const常量、constexpr常量,捕获后的属性与之间的属性一致 捕获this指针 成员函数中的lambda表达式默认不能访问成员…

了解基于Elasticsearch 的站内搜索,及其替代方案

对于一家公司而言,数据量越来越多,如果快速去查找这些信息是一个很难的问题,在计算机领域有一个专门的领域IR(Information Retrival)研究如何获取信息,做信息检索。在国内的如百度这样的搜索引擎也属于这个…