基于回溯搜索优化的BP神经网络(分类应用) - 附代码

基于回溯搜索优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于回溯搜索优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.回溯搜索优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 回溯搜索算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用回溯搜索算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.回溯搜索优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 回溯搜索算法应用

回溯搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108366901

回溯搜索算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从回溯搜索算法的收敛曲线可以看到,整体误差是不断下降的,说明回溯搜索算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125468.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

10.1select并发服务器以及客户端

服务器&#xff1a; #include<myhead.h>//do-while只是为了不让花括号单独存在&#xff0c;并不循环 #define ERR_MSG(msg) do{\fprintf(stderr,"%d:",__LINE__);\perror(msg);\ }while(0);#define PORT 8888//端口号1024-49151 #define IP "192.168.2.5…

STM32复习笔记(二):GPIO

目录 &#xff08;一&#xff09;Demo流程 &#xff08;二&#xff09;工程配置 &#xff08;三&#xff09;代码部分 &#xff08;四&#xff09;外部中断&#xff08;EXTI&#xff09; &#xff08;一&#xff09;Demo流程 首先&#xff0c;板子上有4个按键&#xff0c;…

Linux实用操作(固定IP、进程控制、监控、文件解压缩)

目录 一、快捷键 1、ctrl c强制停止 2、ctrl d退出或登出 3、历史命令搜索history 4、光标移动快捷键 5、清屏 二、软件安装 1、CentOS的yum命令 2、Ubantu的apt命令 三、systemctl命令 四、软连接 五、日期、时区 1、date命令 2、修改Linux时区为东八区 3、nt…

Docker Tutorial

什么是Docker 为每个应用提供完全隔离的运行环境 Dockerfile&#xff0c; Image&#xff0c;Container Image&#xff1a; 相当于虚拟机的快照&#xff08;snapshot&#xff09;里面包含了我们需要部署的应用程序以及替它所关联的所有库。通过image&#xff0c;我们可以创建很…

创建vue3工程

一、新建工程目录E:\vue\projectCode\npm-demo用Visual Studio Code 打开目录 二、点击新建文件夹按钮&#xff0c;新建vue3-01-core文件夹 三、右键vue3-01-core文件夹点击在集成终端中打开 四、初始化项目&#xff0c;输入npm init 一直敲回车直到创建成功如下图 npm init 五…

单调队列---数据结构与算法

简介 队列也是一种受限制的线性表和栈相类似&#xff0c;栈是先进后出&#xff0c;而队列是先进先出&#xff0c;就好像一没有底的桶&#xff0c;往里面放东西&#xff0c;如图 在这里也是用数组来实现队列&#xff0c;用数组实现的叫做顺序队列 队列的数组模拟 const int N…

Docker启动Mysql

如果docker里面没有mysql需要先pull一个mysql镜像 docker pull mysql其中123456是mysql的密码 docker run --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD123456 -d mysql可以使用如下命令进入Mysql的命令行界面 docker exec -it mysql bash登录mysql使用如下命令,root是…

大恒IFrameData IImageData转bmp HObject Mat

大恒工业相机采集的帧数据转为其他8bit图像格式 C#转为bmp格式转为Halcon的HObject格式转为OpenCVSharp的Mat格式 回调采集图像的数据类型为IFrameData&#xff0c;单帧采集的数据类型为IImageData&#xff0c;两者的区别为IImageData类多了一个**Destroy()**方法 C# 转为bm…

typescript 分析泛型工具类Partial的实现原理理解索引查询类型

Partial实现原理 在 TypeScript 中&#xff0c;Partial 是一个非常有用的工具类型&#xff0c;它能够将一个对象类型的所有属性变为可选。Partial 的实现原理是通过使用映射类型&#xff08;Mapped Type&#xff09;和 keyof 关键字来实现的。 下面我们来看一下 Partial 的实现…

ChatGPT技术原理

Task03 ChatGPT技术原理 目录 阶段一&#xff1a;有监督微调Supervised fine-tuning (SFT)阶段二&#xff1a;训练回报模型&#xff08;Reward Model, RM&#xff09;阶段三&#xff1a;使用强化学习微调 SFT 模型 ChatGPT 是由 GPT-3 迭代来的&#xff0c;原有的 GPT-3 可能…

小程序入门笔记(一) 黑马程序员前端微信小程序开发教程

微信小程序基本介绍 小程序和普通网页有以下几点区别&#xff1a; 运行环境&#xff1a;小程序可以在手机的操作系统上直接运行&#xff0c;如微信、支付宝等&#xff1b;而普通网页需要在浏览器中打开才能运行。 开发技术&#xff1a;小程序采用前端技术进行开发&#xff0c;…

前后端通信到底是怎样一个过程

前后端通信是怎样 前言&#xff1a;Http协议 超文本传输协议 规定&#xff1a;每一次前后端通信&#xff0c;前端需要主动向后端发出请求&#xff0c;后端接收到前端的请求后&#xff0c;可以给出响应 1、Http报文 浏览器向服务器发送请求时&#xff0c;请求本身就是信息&…