目标检测算法改进系列之Backbone替换为FocalNet

FocalNet

近些年,Transformers在自然语言处理、图像分类、目标检测和图像分割上均取得了较大的成功,归根结底是自注意力(SA :self-attention)起到了关键性的作用,因此能够支持输入信息的全局交互。但是由于视觉tokens的大量存在,自注意力的计算复杂度高,尤其是在高分辨的输入时,因此针对该缺陷,论文《Focal Modulation Networks》提出了FocalNet网络。

论文地址:Focal Modulation Networks

原理:使用新提出的Focal Modulation替代之前的SA自注意力模块,解耦聚合和单个查询过程,先将查询周围的上下文信息进行聚合,再根据聚合信息获取查询结果。如下图所示,图中红色表示query token。对比来看,Window-wise Self-Attention (SA)利用周围的token(橙色)来捕获空间上下文信息;在此基础上,Focal Attention扩大了感受野,还可以使用更远的summarized tokens(蓝色);而Focal Modulation更为强大,先利用诸如depth-wise convolution的方式将不同粒度级别的空间上下文编码为summarized tokens (橙色、绿色和蓝色),再根据查询内容,选择性的将这些summarized tokens融合为query token。而本文新提出的方式便是进行轻量化,将聚合和单个查询进行解耦,减少计算量。

在前两者中,绿色和紫色箭头分别代表注意力交互和基于查询的聚合,但是都存在一个缺陷,即:均需要涉及大量的交互和聚合操作。而Focal Modulation计算过程得到大量简化。
原理图

FocalNet代码实现

# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal___all__ = ['focalnet_tiny_srf', 'focalnet_tiny_lrf', 'focalnet_small_srf', 'focalnet_small_lrf', 'focalnet_base_srf', 'focalnet_base_lrf', 'focalnet_large_fl3', 'focalnet_large_fl4', 'focalnet_xlarge_fl3', 'focalnet_xlarge_fl4', 'focalnet_huge_fl3', 'focalnet_huge_fl4']def update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictclass Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)     x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass FocalModulation(nn.Module):def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.focal_window = focal_windowself.focal_level = focal_levelself.focal_factor = focal_factorself.use_postln_in_modulation = use_postln_in_modulationself.normalize_modulator = normalize_modulatorself.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)self.act = nn.GELU()self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)self.focal_layers = nn.ModuleList()self.kernel_sizes = []for k in range(self.focal_level):kernel_size = self.focal_factor*k + self.focal_windowself.focal_layers.append(nn.Sequential(nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size//2, bias=False),nn.GELU(),))              self.kernel_sizes.append(kernel_size)          if self.use_postln_in_modulation:self.ln = nn.LayerNorm(dim)def forward(self, x):"""Args:x: input features with shape of (B, H, W, C)"""C = x.shape[-1]# pre linear projectionx = self.f(x).permute(0, 3, 1, 2).contiguous()q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)# context aggreationctx_all = 0 for l in range(self.focal_level):         ctx = self.focal_layers[l](ctx)ctx_all = ctx_all + ctx * gates[:, l:l+1]ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))ctx_all = ctx_all + ctx_global * gates[:,self.focal_level:]# normalize contextif self.normalize_modulator:ctx_all = ctx_all / (self.focal_level+1)# focal modulationmodulator = self.h(ctx_all)x_out = q * modulatorx_out = x_out.permute(0, 2, 3, 1).contiguous()if self.use_postln_in_modulation:x_out = self.ln(x_out)# post linear porjectionx_out = self.proj(x_out)x_out = self.proj_drop(x_out)return x_outdef extra_repr(self) -> str:return f'dim={self.dim}'def flops(self, N):# calculate flops for 1 window with token length of Nflops = 0flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))# focal convolutionfor k in range(self.focal_level):flops += N * (self.kernel_sizes[k]**2+1) * self.dim# global gatingflops += N * 1 * self.dim #  self.linearflops += N * self.dim * (self.dim + 1)# x = self.proj(x)flops += N * self.dim * self.dimreturn flopsclass FocalNetBlock(nn.Module):r""" Focal Modulation Network Block.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resulotion.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.drop (float, optional): Dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNormfocal_level (int): Number of focal levels. focal_window (int): Focal window size at first focal leveluse_layerscale (bool): Whether use layerscalelayerscale_value (float): Initial layerscale valueuse_postln (bool): Whether use layernorm after modulation"""def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,focal_level=1, focal_window=3,use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.mlp_ratio = mlp_ratioself.focal_window = focal_windowself.focal_level = focal_levelself.use_postln = use_postlnself.norm1 = norm_layer(dim)self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)self.gamma_1 = 1.0self.gamma_2 = 1.0    if use_layerscale:self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)self.H = Noneself.W = Nonedef forward(self, x):H, W = self.H, self.WB, L, C = x.shapeshortcut = x# Focal Modulationx = x if self.use_postln else self.norm1(x)x = x.view(B, H, W, C)x = self.modulation(x).view(B, H * W, C)x = x if not self.use_postln else self.norm1(x)# FFNx = shortcut + self.drop_path(self.gamma_1 * x)x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))return xdef extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, " \f"mlp_ratio={self.mlp_ratio}"def flops(self):flops = 0H, W = self.input_resolution# norm1flops += self.dim * H * W# W-MSA/SW-MSAflops += self.modulation.flops(H*W)# mlpflops += 2 * H * W * self.dim * self.dim * self.mlp_ratio# norm2flops += self.dim * H * Wreturn flopsclass BasicLayer(nn.Module):""" A basic Focal Transformer layer for one stage.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resolution.depth (int): Number of blocks.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.focal_level (int): Number of focal levelsfocal_window (int): Focal window size at first focal leveluse_layerscale (bool): Whether use layerscalelayerscale_value (float): Initial layerscale valueuse_postln (bool): Whether use layernorm after modulation"""def __init__(self, dim, out_dim, input_resolution, depth,mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, focal_level=1, focal_window=1, use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.depth = depthself.use_checkpoint = use_checkpoint# build blocksself.blocks = nn.ModuleList([FocalNetBlock(dim=dim, input_resolution=input_resolution,mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer,focal_level=focal_level,focal_window=focal_window, use_layerscale=use_layerscale, layerscale_value=layerscale_value,use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator, )for i in range(depth)])if downsample is not None:self.downsample = downsample(img_size=input_resolution, patch_size=2, in_chans=dim, embed_dim=out_dim, use_conv_embed=use_conv_embed, norm_layer=norm_layer, is_stem=False)else:self.downsample = Nonedef forward(self, x, H, W):for blk in self.blocks:blk.H, blk.W = H, Wif self.use_checkpoint:x = checkpoint.checkpoint(blk, x)else:x = blk(x)if self.downsample is not None:x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)x, Ho, Wo = self.downsample(x)else:Ho, Wo = H, W        return x, Ho, Wodef extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"def flops(self):flops = 0for blk in self.blocks:flops += blk.flops()if self.downsample is not None:flops += self.downsample.flops()return flopsclass PatchEmbed(nn.Module):r""" Image to Patch EmbeddingArgs:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):super().__init__()patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimif use_conv_embed:# if we choose to use conv embedding, then we treat the stem and non-stem differentlyif is_stem:kernel_size = 7; padding = 2; stride = 4else:kernel_size = 3; padding = 1; stride = 2self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)else:self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = Nonedef forward(self, x):B, C, H, W = x.shapex = self.proj(x)        H, W = x.shape[2:]x = x.flatten(2).transpose(1, 2)  # B Ph*Pw Cif self.norm is not None:x = self.norm(x)return x, H, Wdef flops(self):Ho, Wo = self.patches_resolutionflops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])if self.norm is not None:flops += Ho * Wo * self.embed_dimreturn flopsclass FocalNet(nn.Module):r""" Focal Modulation Networks (FocalNets)Args:img_size (int | tuple(int)): Input image size. Default 224patch_size (int | tuple(int)): Patch size. Default: 4in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Focal Transformer layer.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4drop_rate (float): Dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False layerscale_value (float): Value for layer scale. Default: 1e-4 use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)"""def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,embed_dim=96, depths=[2, 2, 6, 2], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1,norm_layer=nn.LayerNorm, patch_norm=True,use_checkpoint=False,                 focal_levels=[2, 2, 2, 2], focal_windows=[3, 3, 3, 3], use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False, **kwargs):super().__init__()self.num_layers = len(depths)embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]self.num_classes = num_classesself.embed_dim = embed_dimself.patch_norm = patch_normself.num_features = embed_dim[-1]self.mlp_ratio = mlp_ratio# split image into patches using either non-overlapped embedding or overlapped embeddingself.patch_embed = PatchEmbed(img_size=to_2tuple(img_size), patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], use_conv_embed=use_conv_embed, norm_layer=norm_layer if self.patch_norm else None, is_stem=True)num_patches = self.patch_embed.num_patchespatches_resolution = self.patch_embed.patches_resolutionself.patches_resolution = patches_resolutionself.pos_drop = nn.Dropout(p=drop_rate)# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build layersself.layers = nn.ModuleList()for i_layer in range(self.num_layers):layer = BasicLayer(dim=embed_dim[i_layer], out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,  input_resolution=(patches_resolution[0] // (2 ** i_layer),patches_resolution[1] // (2 ** i_layer)),depth=depths[i_layer],mlp_ratio=self.mlp_ratio,drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],norm_layer=norm_layer, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], use_conv_embed=use_conv_embed,use_checkpoint=use_checkpoint, use_layerscale=use_layerscale, layerscale_value=layerscale_value, use_postln=use_postln,use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator)self.layers.append(layer)self.norm = norm_layer(self.num_features)self.apply(self._init_weights)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)@torch.jit.ignoredef no_weight_decay(self):return {''}@torch.jit.ignoredef no_weight_decay_keywords(self):return {''}def forward(self, x):input_size = x.size(2)scale = [4, 8, 16, 32]x, H, W = self.patch_embed(x)x = self.pos_drop(x)features = [x, None, None, None]for layer in self.layers:x, H, W = layer(x, H, W)if input_size // H in scale:features[scale.index(input_size // H)] = x# features[-1] = self.norm(features[-1])  # B L Cfor i in range(len(features)):features[i] = torch.transpose(features[i], dim0=2, dim1=1).view(-1,features[i].size(2), int(features[i].size(1) ** 0.5), int(features[i].size(1) ** 0.5))return featuresdef flops(self):flops = 0flops += self.patch_embed.flops()for i, layer in enumerate(self.layers):flops += layer.flops()flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)flops += self.num_features * self.num_classesreturn flopsmodel_urls = {"focalnet_tiny_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth","focalnet_tiny_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth","focalnet_small_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth","focalnet_small_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth","focalnet_base_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth","focalnet_base_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",    "focalnet_large_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet_large_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet_xlarge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet_xlarge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", "focalnet_huge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth", "focalnet_huge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth", 
}def focalnet_tiny_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_tiny_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_small_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)if pretrained:url = model_urls['focalnet_base_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_tiny_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_tiny_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_small_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)if pretrained:url = model_urls['focalnet_base_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_tiny_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_tiny_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=384, **kwargs)if pretrained:url = model_urls['focalnet_small_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)if pretrained:url = model_urls['focalnet_base_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return model# FocalNet large+ models 
def focalnet_large_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_large_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_large_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_large_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_xlarge_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)if pretrained:url = model_urls['focalnet_xlarge_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_xlarge_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)if pretrained:url = model_urls['focalnet_xlarge_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_huge_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)if pretrained:url = model_urls['focalnet_huge_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_huge_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)if pretrained:url = model_urls['focalnet_huge_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modelif __name__ == '__main__':from copy import deepcopyimg_size = 640x = torch.rand(16, 3, img_size, img_size).cuda()model = focalnet_tiny_srf(pretrained=True).cuda()# model_copy = deepcopy(model)for i in model(x):print(i.size())flops = model.flops()print(f"number of GFLOPs: {flops / 1e9}")n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)print(f"number of params: {n_parameters}")print(list(model_urls.keys()))

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)is_backbone = Falselayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argstry:t = mm = eval(m) if isinstance(m, str) else m  # eval stringsexcept:passfor j, a in enumerate(args):with contextlib.suppress(NameError):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept:args[j] = an = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif isinstance(m, str):t = mm = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {focalnet_tiny_srf}: #可添加更多Backbonem = m(*args)c2 = m.channelelse:c2 = ch[f]if isinstance(c2, list):is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list):ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return x

创建新的.yaml配置文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, focalnet_tiny_srf, [False]], # 4[-1, 1, SPPF, [1024, 5]],  # 5]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]], # 6[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7[[-1, 3], 1, Concat, [1]],  # cat backbone P4 8[-1, 3, C3, [512, False]],  # 9[-1, 1, Conv, [256, 1, 1]], # 10[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11[[-1, 2], 1, Concat, [1]],  # cat backbone P3 12[-1, 3, C3, [256, False]],  # 13 (P3/8-small)[-1, 1, Conv, [256, 3, 2]], # 14[[-1, 10], 1, Concat, [1]],  # cat head P4 15[-1, 3, C3, [512, False]],  # 16 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]], # 17[[-1, 5], 1, Concat, [1]],  # cat head P5 18[-1, 3, C3, [1024, False]],  # 19 (P5/32-large)[[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125624.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全志ARM926 Melis2.0系统的开发指引⑤

全志ARM926 Melis2.0系统的开发指引⑤ 编写目的8. 固件修改工具(ImageModify)使用8.1.界面说明8.2.操作步骤8.2.1. 配置平台8.2.2. 选择固件8.2.3. 选择要替换的文件8.2.4. 替换文件8.2.5. 保存固件 8.3.注意事项8.4.增加固件修改权限设置8.4.1. 概述8.4.2. 操作说明8.4.2.1.打…

Python 无废话-基础知识流程控制语句

If 流程控制语句 最常见的控制流语句是if 语句。在自然语言中&#xff0c;if 语句念起来可能是&#xff1a;“如果条件为真&#xff0c;执行子句中的代码。”在Python中的条件语句用于根据特定条件执行不同的代码块条件。 用代码描述如下&#xff1a; cost 60000 if cost &…

nodejs+vue游戏测评交流系统elementui

可以实现首页、发布招募、公司资讯、我的等&#xff0c;另一方面来说也可以提高在游戏测评交流方面的效率给相关管理人员的工作带来一定的便利。在我的页面可以对游戏攻略、我的收藏管理、实际上如今信息化成为一个未来的趋势或者可以说在当前现代化的城市典范中,发布招募等功能…

大语言模型之十五-预训练和监督微调中文LLama-2

这篇博客是继《大语言模型之十二 SentencePiece扩充LLama2中文词汇》、《大语言模型之十三 LLama2中文推理》和《大语言模型之十四-PEFT的LoRA》 前面博客演示了中文词汇的扩充以及给予LoRA方法的预训练模型参数合并&#xff0c;并没有给出LoRA模型参数是如何训练得出的。 本篇…

014-第二代软件开发

第二代软件开发 文章目录 第二代软件开发项目介绍正式开始我们的Debian Qt 软件开发主题色QSS U盘检测QFileSystemWatcher 屏幕键盘LibUSB 使用 总结 关键字&#xff1a; Qt、 Qml、 U盘检测、 屏幕键盘、 LibUSB 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这…

嵌入式Linux裸机开发(一)基础介绍及汇编LED驱动

系列文章目录 文章目录 系列文章目录前言IMX6ULL介绍主要资料IO表现形式 汇编LED驱动原理图初始化流程时钟设置IO复用设置电气属性设置使用GPIO 编写驱动编译程序编译.o文件地址链接.elf格式转换.bin反汇编&#xff08;其他&#xff09; 综合成Makefile完成一步编译烧录程序imx…

深度学习基础之参数量(3)

一般的CNN网络的参数量估计代码 class ResidualBlock(nn.Module):def __init__(self, in_planes, planes, norm_fngroup, stride1):super(ResidualBlock, self).__init__()print(in_planes, planes, norm_fn, stride)self.conv1 nn.Conv2d(in_planes, planes, kernel_size3, …

Python综合案例:学生管理系统

目录 需求说明&#xff1a; 功能&#xff1a; 创建入口函数&#xff1a; 实现菜单函数&#xff1a; 实现增删查操作&#xff1a; 1. 新增学生 2. 展示学生 3. 查找学生 4. 删除学生 加入存档读档&#xff1a; 1. 约定存档格式 2. 实现存档函数 3. 实现读档函数 打…

mysql双主互从通过KeepAlived虚拟IP实现高可用

mysql双主互从通过KeepAlived虚拟IP实现高可用 在mysql 双主互从的基础上&#xff0c; 架构图&#xff1a; Keepalived有两个主要的功能&#xff1a; 提供虚拟IP&#xff0c;实现双机热备通过LVS&#xff0c;实现负载均衡 安装 # 安装 yum -y install keepalived # 卸载 …

全志ARM926 Melis2.0系统的开发指引⑥

全志ARM926 Melis2.0系统的开发指引⑥ 编写目的9. 系统启动流程9.1. Shell 部分9.2.Orange 和 desktop 部分9.3. app_root 加载部分9.4. home 加载部分 10. 显示相关知识概述10.1. 总体结构10.2. 显示过程10.3. 显示宽高参数关系 -. 全志相关工具和资源-.1 全志固件镜像修改工具…

【开发篇】十五、Spring Task实现定时任务

文章目录 1、使用示例2、相关配置3、Scheduled注解4、Spring Task单线程下的阻塞坑5、Spring Task阻塞问题的处理思路6、Spring Task在分布式环境中 上一篇用Quartz来实现了定时任务&#xff0c;但相对来说&#xff0c;这个框架还是比较繁琐。Spring Boot默认在无任何第三方依赖…

minikube如何设置阿里云镜像以及如何解决dashboard无法打开的解决方案_已设置图床

minikube如何设置阿里云镜像以及如何解决dashboard无法打开的解决方案 minikube dashboard报错 considerconsider-Dell-G15-5511:~$ minikube dashboard &#x1f914; 正在验证 dashboard 运行情况 ... &#x1f680; 正在启动代理... &#x1f914; 正在验证 proxy 运行…