矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列,这一次我们多看看例题,了解什么情况下用矩阵比较合适。

先看例题

1.洛谷P1939 【模板】矩阵加速(数列)

模板题应该很简单。

补:1<n<=10^9

10^9肯定超了,所以可以用矩阵做

我们可以观察到,每一项(x>3)都是由两个量组成,于是创建矩阵:

A=[a_{n-1},a_{n-3}]

同时:B=A\times base=[a_{n},?]

那么因为如果要再让A\times base\times base=[a_{n+1},??],A*base 之后还是应该是前一个为一项,后一项为它的两项前。所以?处应为a_{n-2}。??处应为什么自己想想,发在评论区里吧。

但是,a_{n-2}在A中并没有出现,这样我们就不可以用A*base表示B了,因为矩阵的乘法中,必须要上一个矩阵中有的元素,才能进入下一个矩阵中。

无论怎样,a_{n-2}都无法表示为n\times a_{n-1}+m\times a_{n-2}的形式,所以B不可以由A构成。

那这个时候就可以用一个巧妙的方法:我们在A和B中都增加a_{n-2}这一项,这样就会变成

[a_{n-1},a_{n-2},a_{n-3}]\times base=[a_{n},a_{n-1},a_{n-2}]

a_{n}可以表示为a_{n-1}+a_{n-3},这样就可以满足每一个条件都可以了。

那么我们利用矩阵乘法,在纸上演算七七四十八个小时,就可以得出,

base=\begin{bmatrix} 1,1,0\\ 0,0,1\\ 1,0,0\\ \end{bmatrix}

那么用和斐波那契数列一样的做法,快速幂即可

#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
struct Matrix{int n,m;long long a[100][100];Matrix(){memset(a,0,sizeof(a));}Matrix(int _n,int _m){n=_n;m=_m;memset(a,0,sizeof(a));}
};
Matrix ans(1,3);
Matrix base(3,3);
void init(){ans.a[0][0]=1;ans.a[0][1]=1;ans.a[0][2]=1;base.a[0][0]=1;base.a[0][1]=1;base.a[0][2]=0;base.a[1][0]=0;base.a[1][1]=0;base.a[1][2]=1;base.a[2][0]=1;base.a[2][1]=0;base.a[2][2]=0;
}
Matrix mul(Matrix a,Matrix b){Matrix res(a.n,b.m);for(int i=0;i<a.n;i++){for(int j=0;j<b.m;j++){for(int k=0;k<a.m;k++){res.a[i][j]+=a.a[i][k]*b.a[k][j]%mod;}res.a[i][j]%=mod;}}return res;
}
Matrix bpow(Matrix a,long long n){Matrix res(a.n,a.n);for(int i=0;i<a.n;i++)res.a[i][i]=1;while(n!=0){if(n&1){res=mul(res,a);}a=mul(a,a);n>>=1;}return res;
}
long long F(long long n){base=bpow(base,n-3);/*for(int i=0;i<3;i++){for(int j=0;j<3;j++){cout<<base.a[i][j];}cout<<endl;}*/ans=mul(ans,base);return ans.a[0][0]%mod;
}
int main(){long long t;cin>>t;while(t--){long long n;cin>>n;if(n<=3){cout<<1<<endl;continue;}init();cout<<F(n)<<endl;}return 0;
}

2.洛谷P1349 广义斐波那契数列

其实很简单,就是把斐波那契数列的模板套一下

先写一半

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125658.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 基于SSM的民宿推荐系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

【C语言经典100例题-70】求一个字符串的长度(指针)

代码 使用指针来遍历字符串&#xff0c;直到遇到字符串结尾的空字符\0为止&#xff0c;统计字符数量即为字符串长度。 #include<stdio.h> #define n 20 int getlength(char *a) {int len 0;while(*a!\0){len;a;}return len; } int main() {char *arr[n] { 0 };int l…

GPT系列论文解读:GPT-2

GPT系列 GPT&#xff08;Generative Pre-trained Transformer&#xff09;是一系列基于Transformer架构的预训练语言模型&#xff0c;由OpenAI开发。以下是GPT系列的主要模型&#xff1a; GPT&#xff1a;GPT-1是于2018年发布的第一个版本&#xff0c;它使用了12个Transformer…

(一)正点原子STM32MP135移植——准备

一、简述 使用板卡&#xff1a;正点原子的ATK-DLMP135 V1.2 从i.mx6ull学习完过来&#xff0c;想继续学习一下移植uboot和内核的&#xff0c;但是原子官方没有MP135的移植教程&#xff0c;STM32MP157的移植教程用的又是老版本的代码&#xff0c;ST官方更新后的代码不兼容老版本…

ARM底层汇编基础指令

汇编语言的组成 伪操作 不参与程序执行&#xff0c;但是用于告诉编译器程序怎么编译.text .global .end .if .else .endif .data 汇编指令 编译器将一条汇编指令编译成一条机器码&#xff0c;在内存里一条指令占4字节内存&#xff0c;一条指令可以实现一个特定的功能 伪指令 不…

1.3.OpenCV技能树--第一单元--图像的基础操作(基础篇)

文章目录 1.文章内容来源2.图像的基本操作2.1.图像加载2.2.图像显示2.3.数据读取2.4.截取图像2.5.颜色通道提取2.5.1.保留红色处理2.5.2.保留绿色处理2.5.3.保留蓝色处理 3.易错点总结与反思 1.文章内容来源 1.题目来源: 2.资料来源:https://edu.csdn.net/skill/opencv/opencv…

网课搜题 小猿题库多接口微信小程序源码 自带流量主

多接口小猿题库等综合网课搜题微信小程序源码带流量主&#xff0c;网课搜题小程序, 可以开通流量主赚钱 搭建教程1, 微信公众平台注册自己的小程序2, 下载微信开发者工具和小程序的源码3, 上传代码到自己的小程序 源码下载&#xff1a;https://download.csdn.net/download/m0_…

计算机网络-计算机网络体系结构-物理层

目录 一、通信基础 通信方式 传输方式 码元 传输率 *二 准则 2.1奈氏准则(奈奎斯特定理) 2.2香农定理 三、信号的编码和调制 *数字数据->数字信号 数字数据->模拟信号 模拟数据->数字信号 模拟数据->模拟信号 *四、数据交换方式 电路交换 报文交换…

解密京东面试:如何应对Redis缓存穿透?

亲爱的小伙伴们&#xff0c;大家好&#xff01;欢迎来到小米的微信公众号&#xff0c;今天我们要探讨一个在面试中可能会遇到的热门话题——Redis缓存穿透以及如何解决它。这个话题对于那些渴望进入技术领域的小伙伴们来说&#xff0c;可是必备的哦&#xff01; 认识Redis缓存…

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建

前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…

基于SpringBoot的车辆管理系统

目录 前言 一、技术栈 二、系统功能介绍 员工信息管理 证件信息管理 车辆信息管理 事故登记管理 事故登记 保养登记 违章登记 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实…

vertx的学习总结7之用kotlin 与vertx搞一个简单的http

这里我就简单的聊几句&#xff0c;如何用vertx web来搞一个web项目的 1、首先先引入几个依赖&#xff0c;这里我就用maven了&#xff0c;这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…