STM32复习笔记(五):FSMC连接外部SRAM

目录

Preface:

(一)原理相关

(二)CUBEMX配置

(三)轮询方式读写

(四)DMA方式读写


Preface:

STM32F4有一个FSMC(Flexible Static Memory Controller,可变静态存储控制器),可以用来驱动8080接口的TFT LCD,我之前就写过一篇blog,是用FSMC来驱动4.3寸液晶屏;此外,还可以用FSMC来连接外部的各种存储器,比如说SRAM、NOR FLASH、PSRAM等等;但是每个区(Bank)的功能是不一样的;Bank1可以连接多达4个NOR FLASH或PSRAM/SRAM存储器件(通过片选);Bank2和Bank3只能用于访问NAND FLASH,且每个Bank只能连一个设备;Bank4只能用于连接PC Card设备。


(一)原理相关

STM32F4的FSMC控制器的存储区分为4个区,分别为Bank 1~Bank 4,每个Bank大小为2e28个字节,即256MB,因此总共管理的内存可达到1GB;而每个Bank又分成4个子区,每个子区64MB;Bank1的地址范围为0x6000 0000h~6FFF FFFFh,Bank2的地址范围为0x7000 0000h~7FFF FFFFh,Bank3的地址范围为0x8000 0000h~8FFF FFFFh,Bank4的地址范围为0x9000 0000h~9FFF FFFFh;如下图:

对于STM32F407ZGT6来说,其内部SRAM为192kB,一般的应用程序是足够用了,但是在使用GUI(特别是要做得很炫酷那种)等需要大量内存的功能时,192kB是不太够的,可能就需要扩展SRAM了。FSMC连接PSRAM/SRAM设备时,接口线的功能如下表所示: 

根据开发板的原理图(如下图)可知,FSMC的NE3线连接到了外部SRAM的片选,而由于只有Bank1才能连接SRAM,所以可知板子用的是FSMC的Bank1的子区3来连接外部SRAM;

该SRAM芯片为IS62WV51216,这是一个16位宽512K容量(512K×16位,即1024KB)的静态内存芯片。它与MCU的连接电路如下图所示。芯片几个主要管脚的功能,以及与MCU的连接原理如下:

  • A0至A18是19根地址线,连接FSMC的19根地址线,即FSMC_A0至FSMC_A18;
  • I/O0至I/O15是16位数据线,连接FSMC的FSMC_D0至FSMC_D15数据线;
  • CE是芯片的片选信号,连接MCU的FSMC_NE3(PG10引脚),也就是Bank1子区3的片选信号;
  • OE是输出使能信号,连接MCU的FSMC_NOE(PD4引脚),是读数据时的使能信号;
  • WE是写使能信号,连接MCU的FSMC_NWE (PD5引脚),是写数据使能信号;
  • UB是高字节使能信号,连接MCU的FSMC_NBL[1](PE1引脚);LB是低字节使能信号,连接MCU的FSMC_NBL[0](PE0引脚);通过UB和LB的控制可以只读取一个地址的高字节(I/O8~I/O15)或低字节(I/O0~I/O7),或读取16位数据;

IS62WV51216有19根地址线,能表示的地址范围是512K,而数据宽度是16位(2B),因此实际存储容量是1024KB,偏移地址范围是0x00000~0x7FFFF。又因为Bank1子区3的起始地址是0x68000000,所以IS62WV51216的全部1024KB的地址范围是 0x68000000~0x680FFFFF。FSMC_NBL[1]和FSMC_NBL[0]分别控制高位字节和低位字节访问,实现全部1024KB存储空间的按字节访问。


(二)CUBEMX配置

cubemx中的FSMC模式配置如下(选择子区3,片选为NE3;Mem类型SRAM;地址19位;数据16位;Wait是PSRAM芯片发送给FSMC的等待输入信号,IS62WV51216没有该线,所以disable掉;最后勾上Byte enable,允许字节访问):

开启之后再对照原理图看一遍发现引脚刚好与开发板上的一致,因此无需更改引脚重映射:

接下来进行参数配置;首先是控制参数:Memory type只能选SRAM;Bank只能选Bank1子区3,这两项与模式设置部分是一一对应的;Write operation设置为Enabled,表示使能写操作;Extended mode设置为Disabled,FSMC自动使用模式A对SRAM进行操作,SRAM的读写操作速度基本相同,所以读写操作可以使用相同的时序参数,无需使用扩展模式单独设置读时序和写时序;接下来是时序参数:地址建立时间ADDSET,设置范围为0~15,设置为0即可;数据建立时间DATASET,设置范围为1~255,设置为8;总线翻转时间,设置范围为0~15,设置为0即可;

另外,因为FSMC参数设置部分没有DMA设置页面,如果要用DMA的话需要去System Core的DMA里面手动创建,并且在代码里要手动LINK DMA;

如下图所示:

然后,因为代码里会使用随机数生成器,所以打开Security分组下的RNG模块,启用RNG;RNG需要用到48MHz时钟,时钟树上可能会提示错误;单击时钟树界面上的Resolve Clock Issues,让cubemx自动解决即可:

 

配置好后直接生成代码即可


(三)轮询方式读写

首先加入3个宏,分别表示Bank1子区3的SRAM起始地址、中间地址、结束地址,如下所示:

#define SRAM_ADDR_BEGIN     0x68000000UL    //Bank1子区3的SRAM起始地址
#define SRAM_ADDR_HALF      0x68080000UL    //SRAM中间地址,一共512KB
#define SRAM_ADDR_END       0x680FFFFFUL    //SRAM结束地址,一共1024KB

然后封装一下读取、写入数据;如下:

#include "fsmc_func.h"
#include "fsmc.h"
#include "rng.h"/** 用HAL函数写入数据* */
HAL_StatusTypeDef SRAM_WriteByFunc() {HAL_StatusTypeDef status = HAL_OK;uint8_t str[] = "Input Data";   //待写入字符uint16_t length = sizeof (str); //数据长度(注意是字节数),包括'\0'auto *paddr = (uint32_t*)(SRAM_ADDR_BEGIN); //目标地址//写入字符串if (HAL_OK == HAL_SRAM_Write_8b(&hsram3, paddr, str, length)) {HAL_Delay(1);} else {status = HAL_ERROR;}//写入数字uint32_t num = 0;paddr = (uint32_t*)(SRAM_ADDR_HALF); //修改目标地址HAL_RNG_GenerateRandomNumber(&hrng, &num);  //生成随机数if (HAL_OK == HAL_SRAM_Write_32b(&hsram3, paddr, &num, 1)) {HAL_Delay(1);} else {status = HAL_ERROR;}return status;
}
/** 用HAL函数读取数据* */
HAL_StatusTypeDef SRAM_ReadByFunc() {HAL_StatusTypeDef status = HAL_OK;auto *paddr = (uint32_t*)(SRAM_ADDR_BEGIN);uint8_t str[30];uint16_t length = 30;   //读取字节数//读取字符if (HAL_OK == HAL_SRAM_Read_8b(&hsram3, paddr, str, length)) {HAL_Delay(1);} else {status = HAL_ERROR;}//读取数字uint32_t num = 0;paddr = (uint32_t*)(SRAM_ADDR_HALF);if (HAL_OK == HAL_SRAM_Read_32b(&hsram3, paddr, &num, 1)) {HAL_Delay(1);} else {status = HAL_ERROR;}return status;
}

 然后在主函数中输入测试代码,测试是否正确写入、读出:

进入调试,跑了上半部分,status为HAL_OK,说明成功写入字符串:

 跑完下半部分,status为HAL_OK,说明成功写入随机数num:

接下来是读出调试;重新读出SRAM开始出的字符,发现前面部分与刚刚写入的字符串一模一样,且status仍为HAL_OK,表示成功写入,读出字符串:

接着重新读出SRAM中间部分的一个32位数字,发现status为HAL_OK,说明读取成功,并且能看到num中的数字与刚刚写入的随机数一模一样,表示成功写入、读出数字:

除此之外,因为这个扩展RAM本质上还是存储器,所以还可以不使用HAL库函数,直接使用指针读取指定地址的内容;STM32是32位机器,最大能够管理的地址空间为2e32 = 4GB,只要在0x0000 0000h~0xFFFF FFFFh中实际存在的地址,STM32都能访问;下面代码是通过指针直接访问对应地址中的内容:

/** 用指针写入数据* */
void SRAM_WriteByPointer() {uint16_t num = 100;uint16_t *paddr_16b = (uint16_t*)(SRAM_ADDR_BEGIN); //uint16_t类型的指针for (int i = 0; i < 5; ++i) {num += 10;*paddr_16b = num;   //指定地址写入数据paddr_16b++;    //每次自增2B}
}/** 用指针读出数据* */
void SRAM_ReadByPointer() {uint16_t num[5] = {0};uint16_t *paddr_16b = (uint16_t*)(SRAM_ADDR_BEGIN); //uint16_t类型的指针for (int i = 0; i < 5; ++i) {num[i] = *paddr_16b;paddr_16b++;}
}

通过调试可以发现,用指针来读写数据也无误:

PS.注意,在使用HAL函数读写外部SRAM数据时,传递的目的地址必须是uint32_t类型的指针;而在使用指针直接访问SRAM时,指针的类型需要与实际访问的数据类型一致,比如说要读一个16位的数据,就要指定读取地址为一个uint16_t的指针(因为指针只是一个数,指针的类型就是表示该指针所指向的地址中的数据的类型)


(四)DMA方式读写

前面说了,要用FSMC的DMA需要去System Core的DMA里面手动创建,并且在代码里要手动LINK DMA;为了使用DMA,重新打开项目中的cubemx,如下:

然后进入DMA设置页面,在MenToMem栏新建一个DMA流,发现DMA2中出现了一个同样的DMA流,这是因为只有DMA2控制器支持mem到mem的传输,DMA1不支持;设置属性如下:

  • DMA的工作模式只能设置为Normal模式,没有Circular模式;
  • DMA流自动使用FIFO(DMA流队列),且不能关闭,Burst Size保持默认Single即可;
  • 源存储器和目标存储器的数据宽度设置为Word,这是因为HAL_SRAM_Write_DMA()和HAL_SRAM_Read_DMA()函数只支持uint32_t类型的数据buffer;
  • 源存储器和目标存储器都应开启地址自增;

配置如下图所示: 

此外,还要在NVIC中开启该DMA流的中断,否则系统不会调用中断回调函数;然后生成代码即可;

首先添加几个定义,主要是定义需要用得的宏、变量;如下:

#define     COUNT   5           //缓冲区数据个数
uint32_t    txbuf[COUNT];       //DMA发送缓冲区
uint32_t    rxbuf[COUNT];       //DMA接收缓冲区
bool        direction = true;   //DMA传输方向:ture表示MCU向外部SRAM传,false则相反
bool        is_busy = false;    //DMA状态:true表示正忙,false表示idle

还有,在主函数初始化FSMC后,需要加上LINK,将DMA流对象连接到SRAM对象:

接下来,封装一下DMA数据读、写函数;如下:

/** DMA发送函数* */
HAL_StatusTypeDef SRAM_WriteDMA() {HAL_StatusTypeDef status = HAL_OK;uint32_t val = 1000;//准备数据for (int i = 0; i < COUNT; ++i) {txbuf[i] = val;val += 100;}direction = true;dma_is_busy = true; //指示传输方向以及状态uint32_t *paddr = (uint32_t*)(SRAM_ADDR_BEGIN);if (HAL_OK == HAL_SRAM_Write_DMA(&hsram3, paddr, txbuf, COUNT)) {HAL_Delay(1);} else {status = HAL_ERROR;}return status;
}/** DMA读取函数* */
HAL_StatusTypeDef SRAM_ReadDMA() {HAL_StatusTypeDef status = HAL_OK;uint32_t *paddr = (uint32_t*)(SRAM_ADDR_BEGIN);direction = false;dma_is_busy = true; //指示传输方向以及状态if (HAL_OK == HAL_SRAM_Read_DMA(&hsram3, paddr, rxbuf, COUNT)) {HAL_Delay(1);} else {status = HAL_ERROR;}return status;
}/** DMA传输结束中断回调函数* */
volatile uint8_t test = 0;
/*
* 测试变量 test
* 当MCU向外部SRAM写入成功时,该变量赋值为1
* 当MCU从外部SRAM读取成功时,该变量赋值为2
* */
void HAL_SRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma)
{if (direction) {    //方向为test = 1;} else {test = 2;}dma_is_busy = false;    //表示dma传输结束
}

在主函数中调用这两个函数,打个断点,然后进入快乐的debug环节;一开始发现几个全局变量不在watch窗口中,首先加入窗口:

接着检查一下txbuf和rxbuf中的值,看是否正确:

然后在中断回调函数中打一个断点,看发送完成是否会进入回调;并注意发送数据前两个标志以及test变量的值:

接着走一步,发现发送成功了,进入了HAL_Delay()函数,然后再走一步,果然进入了回调函数;如下:

说明理论与实际情况一致,DMA发送成功。

接下来进入接收环节;一样的调试方法,最后发现依然进入回调函数,test被赋为2,此时查看rxbuf的值,可以看到与刚刚发送的5个数据一模一样,说明DMA接收也成功;如下:

大功告成!

工程链接:https://pan.baidu.com/s/18AJoG1epClGWzjHQkf6SRQ 
提取码:0xFF

完~


以上均为个人学习心得,如有错误,请不吝赐教~

THE END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125742.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ORM】浅聊C#和Java的ORM底层框架

给自己一个目标&#xff0c;然后坚持一段时间&#xff0c;总会有收获和感悟&#xff01; 国庆假期马上结束&#xff0c;闲暇时间&#xff0c;突然对Ado.Net这个词的由来感兴趣&#xff0c;然后就一顿复习了一遍&#xff0c;顺便也了解了下java关于ORM框架的底层是什么&#xff…

华为云云耀云服务器L实例评测|SpringCloud相关组件——nacos和sentinel的安装和配置 运行内存情况 服务器被非法登陆尝试的解决

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 本篇博客介绍SpringCloud相关组件——nacos和sentinel的安装和配置&#xff0c;并分析了运行内存情况&#xff0c;此…

三个要点,掌握Spring Boot单元测试

单元测试是软件开发中不可或缺的重要环节&#xff0c;它用于验证软件中最小可测试单元的准确性。结合运用Spring Boot、JUnit、Mockito和分层架构&#xff0c;开发人员可以更便捷地编写可靠、可测试且高质量的单元测试代码&#xff0c;确保软件的正确性和质量。 一、介绍 本文…

lv7 嵌入式开发-网络编程开发 11 TCP管理与UDP协议

目录 1 TCP管理 1.1 三次握手 1.2 四次挥手 1.3 保活计时器 2 wireshark安装及实验 3.1 icmp协议抓包演示 3.2 tcp协议抓包演示 3 UDP协议 3.1 UDP 的主要特点&#xff1a; 4 练习 1 TCP管理 1.1 三次握手 TCP 建立连接的过程叫做握手。 采用三报文握手&#xff1…

[C国演义] 第十三章

第十三章 三数之和四数之和 三数之和 力扣链接 根据题目要求: 返回的数对应的下标各不相同三个数之和等于0不可包含重复的三元组 – – 即顺序是不做要求的 如: [-1 0 1] 和 [0, 1, -1] 是同一个三元组输出答案顺序不做要求 暴力解法: 排序 3个for循环 去重 — — N^3, …

Nginx与Spring Boot的错误模拟实践:探索502和504错误的原因

文章目录 前言502和504区别---都是Nginx返回的access.log和error.log介绍SpringBoot结合Nginx实战502 and 504准备工作Nginx配置host配置SpringBoot 502模拟access.logerror.log 504模拟access.logerror.log 500模拟access.logerror.log 总结 前言 刚工作那会&#xff0c;最常…

nodejs+vue中医体质的社区居民健康管理系统elementui

可以实现首页、中医体质量表、健康文章、健康视频、我的等&#xff0c;在我的页面可以对医生、小区单元、医疗药品等功能进行操作。目前主要的健康管理系统是以西医为主&#xff0c;而为了传扬中医文化&#xff0c;提高全民健康意识&#xff0c;解决人民日益增长的美好生活需要…

CleanMyMac X4.14.1最新版本下载

CleanMyMac X是一个功能强大的Mac清理软件&#xff0c;它的设计理念是提供多个模块&#xff0c;包括垃圾清理、安全保护、速度优化、应用程序管理和文档管理粉碎等&#xff0c;以满足用户的不同需求。软件的界面简洁直观&#xff0c;让用户能够轻松进行日常的清理操作。 使用C…

【uniapp+vue3+ts】请求函数封装,请求和上传文件拦截器

1、uniapp 拦截器 uni.addInterceptor(STRING,OBJECT) 拦截器中包括基础地址、超时时间、添加请求头标识、添加token utils文件夹下新建http.ts 拦截uploadFile文件上传&#xff0c;rquest请求接口 cosnt baseUrl xxxx// 添加拦截器 const httpInterceptor {//拦截前触发i…

好工具分享:阿里云价格计算器_一键计算精准报价

阿里云服务器价格计算器&#xff0c;鼠标选择云服务器ECS实例规格、地域、系统盘、带宽及购买时长即可一键计算出精准报价&#xff0c;阿里云服务器网分享阿里云服务器价格计算器链接地址&#xff1a; 阿里云服务器价格计算器 先打开阿里云服务器ECS页面 aliyunfuwuqi.com/go…

[计算机入门] Windows附件程序介绍(工具类)

3.14 Windows附件程序介绍(工具类) 3.14.1 计算器 Windows系统中的计算器是一个内置的应用程序&#xff0c;提供了基本的数学计算功能。它被设计为一个方便、易于使用的工具&#xff0c;可以满足用户日常生活和工作中的基本计算需求。 以下是计算器程序的主要功能&#xff1a…

Tensorflow、Pytorch和Ray(张量,计算图)

1.深度学习框架&#xff08;Tensorflow、Pytorch&#xff09; 1.1由来 可以追溯到2016年&#xff0c;当年最著名的事件是alphago战胜人类围棋巅峰柯洁&#xff0c;在那之后&#xff0c;学界普遍认为人工智能已经可以在一些领域超过人类&#xff0c;未来也必将可以在更多领域超过…