《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景

机器学习模型对数据的分析具有很大的优势,很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。
对于安全分析的一般背景就是认为有n方有敏感数据,并且不愿意分享他们的数据,但可以分享聚合计算后的结果。
联邦学习是一种训练数据在多方训练,然后聚合结果得到最终的中心化模型。其中的关键就是多方结果的安全聚合。

风险模型

有很多用户,假设用户都是诚实但好奇的,即会遵守协议规则,但会通过拼凑数据获取敏感信息。换句话说就是恶意的,很可能执行不好的行为。

安全聚合
问题的定义、目标和假设

风险模型假设用户和中心服务器都是诚实且好奇的。如果用户是恶意的,他们有能力在不被监测的情况下影响聚合结果。
安全聚合协议:

  1. 操作高维向量;
  2. 不管计算中涉及到的用户子集,通信是高效的;
  3. 用户dropout是robust;
  4. 足够安全
第一次尝试:一次填充掩码

对于所有的用户,通过每个用户对 u , v u,v uv构建一个secret,具体逻辑:对所有用户进行排序,当用户 u < v u < v u<v构建一个 + s u , v +s_{u,v} +su,v,相反则构建一个 − s v , u -s_{v,u} sv,u,如下图:
请添加图片描述
当聚合的时候
∑ i = 1 3 = x 1 + s 1 , 2 + s 1 , 3 + x 2 − s 1 , 2 + s 2 , 3 + x 3 − s 1 , 3 − s 2 , 3 \sum_{i=1}^3=x_1+s_{1,2}+s_{1,3}+x_2-s_{1,2}+s_{2,3}+x_3-s_{1,3}-s_{2,3} i=13=x1+s1,2+s1,3+x2s1,2+s2,3+x3s1,3s2,3

缺点:

  1. 二次通信,每个用户对 u , v u, v u,v都需要产生他们的秘钥 s u , v s_{u,v} su,v
  2. 如果任何一个用户drop out,对于 ∑ ∀ i y i \sum_{\forall i}y_i iyi都会变成垃圾数据,从而本次不能聚合。
利用Diffie-Hellman秘钥交换改进二次通信

所有的用户商定一个大素数 p p p和一个基本数 g g g。用户将自己的公钥( g a u m o d p g^{a_{u}} \mod p gaumodp,其中 a u a_u au是用户的秘钥)发送给server,然后server广播一个公钥给其他的用户,其他用户使用自己的秘钥和该公钥进行计算,如:
u 1 : ( g a 2 ) a 1 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_1:(g^{a_2})^{a_1}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u1(ga2)a1modp=ga1a2modp=s1,2
u 2 : ( g a 1 ) a 2 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_2:(g^{a_1})^{a_2}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u2(ga1)a2modp=ga1a2modp=s1,2
Diffie-Hellman秘钥交换比上面的方法更简单、更高效。

第二次尝试:可恢复的一次性填充掩码

同上述方法类似,用户将他们加密后的向量 y u y_u yu发给server,然后server询问其他用户是否包含drop out的用户,是的话则取消他们的秘密绑定。如下图:请添加图片描述

该方法的缺点:

  1. 在recovery阶段发生额外的用户drop out,这将要求新drop out的用户也需要recovery,在大量用户的情况下,轮询次数将增加。
  2. 通信延迟导致server以为用户被drop out。因此,会想其他用户recovery秘钥,这导致server在接收到该用户的secret时,解密该用户的 x u x_u xu。如下图
    请添加图片描述
    因此,如果server是恶意的,则可以通过此方法获取用户的inputs

Shamir秘密分享
允许一个用户将秘密 s s s分享成 n n n个shares,然后任意 t t t个shares都能重构出秘密 s s s,而任意 t − 1 t-1 t1个shares都不能重构出秘密 s s s

第三次尝试:处理Dropped用户

为了克服在通信轮次之间,新dropped用户增加recovery阶段,用户Shamir秘密分享的阈值。每个用户发送他们DH秘钥的shares给其他用户,只要符合阈值条件,允许pairwise secrets被recovered,即使是recovery期间新dropped用户。协议可以总结如下:

  1. 每个用户 u u u将他的DH秘钥 a u a_u au分享成n-1个部分 a u 1 , a u 2 , . . , a u ( n − 1 ) a_{u1},a_{u2},..,a_{u(n-1)} au1,au2,..,au(n1),并发送给其他 n − 1 n-1 n1个用户。
  2. server接收来自在线用户的 y u y_u yu(记为: U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1)。
  3. server计算dropped用户集,表示为 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1
  4. server向 U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1询问 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的shares。在第二轮通信中假设至少还有t个用户在线
  5. server对 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的秘钥进行recover,并在最后聚合时,remove掉他们。

该方法依然没有解决恶意server因为通信延迟问题获取用户的数据问题。

最后一次尝试:双重掩码

双重掩码的目标就是为了防止用户数据的泄露,即使当server重构出用户的masks。首先,每个用户产生一个额外的随机秘钥 a u a_u au,并且分布他的shares给其他的用户。生成 y u y_u yu时,添加第二重mask:
y u = x u + a u + ∑ u < v s u , v − ∑ u > v s v , u m o d e R y_u = x_u+a_u+\sum_{u<v}s_{u,v}-\sum_{u>v}s_{v,u}\quad mode \quad R yu=xu+au+u<vsu,vu>vsv,umodeR
在recovery轮次中,对于每个用户,server必须作出精确的选择。从每个在线的成员 v v v中,请求 u u u s u , v s_{u,v} su,v或者 a u a_u au。对于同一个用户,一个诚实的 v v v通过这两种shares不能还原数据,server需要从所有dropped的用户中聚合至少t个 s u , v s_{u,v} su,v的shares或者所有在线用户中t个 a u a_u au的shares。之后,server便可以减去剩余的masks还原数据。
该方法整个过程中的计算和通信数量级还是 n 2 n_2 n2,n表示参与计算的用户数。一个新的问题:当 t < n 2 t<\frac{n}{2} t<2n时,server可以分别询问用户的 s u , v s_{u,v} su,v a u a_u au,来解密用户的数据

参考文献:
[1] K. Bonawitz. ”Practical Secure Aggregation for Privacy-Preserving Machine Learning”. 2017.
[2] J. Konecny. ”Federated Learning: Strategies for Improving Communication Efficiency”. 2017.
[3] H. B. McMahan. ”Communication-Efficient Learning of Deep Networks from Decentralized Data”. 2016.
[4] A. Shamir. ”How to Share a Secret”. 1979.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125746.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商业智能系统的主要功能包括数据仓库、数据ETL、数据统计输出、分析功能

ETL服务内容包含&#xff1a; 数据迁移数据合并数据同步数据交换数据联邦数据仓库

STM32复习笔记(五):FSMC连接外部SRAM

目录 Preface&#xff1a; &#xff08;一&#xff09;原理相关 &#xff08;二&#xff09;CUBEMX配置 &#xff08;三&#xff09;轮询方式读写 &#xff08;四&#xff09;DMA方式读写 Preface&#xff1a; STM32F4有一个FSMC&#xff08;Flexible Static Memory Contr…

【ORM】浅聊C#和Java的ORM底层框架

给自己一个目标&#xff0c;然后坚持一段时间&#xff0c;总会有收获和感悟&#xff01; 国庆假期马上结束&#xff0c;闲暇时间&#xff0c;突然对Ado.Net这个词的由来感兴趣&#xff0c;然后就一顿复习了一遍&#xff0c;顺便也了解了下java关于ORM框架的底层是什么&#xff…

华为云云耀云服务器L实例评测|SpringCloud相关组件——nacos和sentinel的安装和配置 运行内存情况 服务器被非法登陆尝试的解决

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 本篇博客介绍SpringCloud相关组件——nacos和sentinel的安装和配置&#xff0c;并分析了运行内存情况&#xff0c;此…

三个要点,掌握Spring Boot单元测试

单元测试是软件开发中不可或缺的重要环节&#xff0c;它用于验证软件中最小可测试单元的准确性。结合运用Spring Boot、JUnit、Mockito和分层架构&#xff0c;开发人员可以更便捷地编写可靠、可测试且高质量的单元测试代码&#xff0c;确保软件的正确性和质量。 一、介绍 本文…

lv7 嵌入式开发-网络编程开发 11 TCP管理与UDP协议

目录 1 TCP管理 1.1 三次握手 1.2 四次挥手 1.3 保活计时器 2 wireshark安装及实验 3.1 icmp协议抓包演示 3.2 tcp协议抓包演示 3 UDP协议 3.1 UDP 的主要特点&#xff1a; 4 练习 1 TCP管理 1.1 三次握手 TCP 建立连接的过程叫做握手。 采用三报文握手&#xff1…

[C国演义] 第十三章

第十三章 三数之和四数之和 三数之和 力扣链接 根据题目要求: 返回的数对应的下标各不相同三个数之和等于0不可包含重复的三元组 – – 即顺序是不做要求的 如: [-1 0 1] 和 [0, 1, -1] 是同一个三元组输出答案顺序不做要求 暴力解法: 排序 3个for循环 去重 — — N^3, …

Nginx与Spring Boot的错误模拟实践:探索502和504错误的原因

文章目录 前言502和504区别---都是Nginx返回的access.log和error.log介绍SpringBoot结合Nginx实战502 and 504准备工作Nginx配置host配置SpringBoot 502模拟access.logerror.log 504模拟access.logerror.log 500模拟access.logerror.log 总结 前言 刚工作那会&#xff0c;最常…

nodejs+vue中医体质的社区居民健康管理系统elementui

可以实现首页、中医体质量表、健康文章、健康视频、我的等&#xff0c;在我的页面可以对医生、小区单元、医疗药品等功能进行操作。目前主要的健康管理系统是以西医为主&#xff0c;而为了传扬中医文化&#xff0c;提高全民健康意识&#xff0c;解决人民日益增长的美好生活需要…

CleanMyMac X4.14.1最新版本下载

CleanMyMac X是一个功能强大的Mac清理软件&#xff0c;它的设计理念是提供多个模块&#xff0c;包括垃圾清理、安全保护、速度优化、应用程序管理和文档管理粉碎等&#xff0c;以满足用户的不同需求。软件的界面简洁直观&#xff0c;让用户能够轻松进行日常的清理操作。 使用C…

【uniapp+vue3+ts】请求函数封装,请求和上传文件拦截器

1、uniapp 拦截器 uni.addInterceptor(STRING,OBJECT) 拦截器中包括基础地址、超时时间、添加请求头标识、添加token utils文件夹下新建http.ts 拦截uploadFile文件上传&#xff0c;rquest请求接口 cosnt baseUrl xxxx// 添加拦截器 const httpInterceptor {//拦截前触发i…

好工具分享:阿里云价格计算器_一键计算精准报价

阿里云服务器价格计算器&#xff0c;鼠标选择云服务器ECS实例规格、地域、系统盘、带宽及购买时长即可一键计算出精准报价&#xff0c;阿里云服务器网分享阿里云服务器价格计算器链接地址&#xff1a; 阿里云服务器价格计算器 先打开阿里云服务器ECS页面 aliyunfuwuqi.com/go…