milvus 结合Thowee 文本转向量 ,新建表,存储,搜索,删除

1.向量数据库科普

【上集】向量数据库技术鉴赏
【下集】向量数据库技术鉴赏
milvus连接

from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
connections.connect(host='124.****', port='19530')

2.milvus + Thowee 文本转向量 使用

@app.route("/es",methods=["GET","POST"])
def es_sous():ans_pipe = (pipe.input('subject').map('subject', 'vector', ops.text_embedding.dpr(model_name="facebook/dpr-ctx_encoder-single-nq-base"))#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('vector', 'vector', lambda x: x / np.linalg.norm(x, axis=0))#对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.output('vector'))param = request.args.get('prop')#传入一个文本ans = ans_pipe(param)#文本转向量ans = DataCollection(ans)#格式化ans.show() #print(type(ans[0].vector))list1 = ans[0].vector.tolist()return list1

在这里插入图片描述

3.milvus + openai 文本转向量 使用

import openai
OPENAI_ENGINE = 'text-embedding-ada-002'#使用哪种嵌入模型
openai.api_key = 'sk-*****'#您的 OpenAI 帐户密钥
def embed(texts): #返回 向量embeddings = openai.Embedding.create(input=texts,engine=OPENAI_ENGINE)return [x['embedding'] for x in embeddings['data']]

4. milvus + 微软openai 文本转向量 使用

import openai
openai.api_key = "0**********"    # Azure 的密钥
openai.api_base = "https://zhan.op*****"  # Azure 的终结点
openai.api_type = "azure"
openai.api_version = "2023-03-15-preview" # API 版本,未来可能会变
model = "text"  # 模型的部署名
def embed(texts):embeddings = openai.Embedding.create(input=texts,engine=model)return [x['embedding'] for x in embeddings['data']]

5.milvus 新建表

在这里插入图片描述
在这里插入图片描述

def create_milvus_collection(collection_name,dim):if utility.has_collection(collection_name):utility.drop_collection(collection_name)fields = [FieldSchema(name = 'id',dtype=DataType.INT64,description='ids',is_primary=True),FieldSchema(name='answer',dtype=DataType.VARCHAR,max_length = 2000,description='答案'),FieldSchema(name='subject',dtype=DataType.VARCHAR,max_length = 1000,description='题目'),FieldSchema(name='subject_embedding', dtype=DataType.FLOAT_VECTOR, dim=dim,description = '题目矢量'),FieldSchema(name='url', dtype=DataType.VARCHAR, max_length = 255,description = '路径')]# CollectionSchema:这是一个用于定义数据表结构的类。schema = CollectionSchema(fields = fields,description='Test')collection = Collection(name=collection_name,schema=schema)index_params = {'metric_type': 'L2','index_type': "IVF_FLAT",'params': {"nlist": 2048}}collection.create_index(field_name="subject_embedding",index_params=index_params)return collection
collections = create_milvus_collection('Test',768) # 表名 , 模型维度

6.milvus存储

1.milvus存储 和 thowee 管道

insert = (pipe.input('id','subject','answer','url','subject_embedding')#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('subject','vec',ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))# 对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0)).map(('id','answer','subject','vec','url'),'insert_status',ops.ann_insert.milvus_client(host='124。*****', port='19530', collection_name='Test'))#进行存储.output()#返回
)

2.milvus存储 和 原始的存储方案

 milvus = Milvus(host=HOST, port=PORT) # milvus 连接data1 = [[],[],# subject[],# option[],# answer[],#knowledgepoints[],#img[],#video[],#parse]data1[0].append(None)data1[1].append(request.args.get('subject'))data1[2].append(request.args.get('option'))data1[3].append(request.args.get('answer'))data1[4].append(request.args.get('knowledgepoints'))data1[5].append(request.args.get('img'))data1[6].append(request.args.get('video'))data1[7].append(request.args.get('parse'))data1.append(embed(data1[1]))# 转向量milvus.insert(collection_name=COLLECTION_NAME,entities=data1)# 调用 insert 新增 表名+数据return "ok"

7.milvus 搜索

# milvus 搜索
# 搜索 索引
QUERY_PARAM = {"metric_type": "L2","params": {"ef": 64},
}collection.search()res = collection.search(embed(request.args.get('subject')), anns_field='subject_embedding', param=QUERY_PARAM, limit = 1, output_fields=['id', 'subject', 'answer','option'])
# 向量 , 指定被搜索字段,索引,top1,返回字段______________________________________________例子
import openai
from pymilvus import connections, utility, FieldSchema, Collection, CollectionSchema, DataType
HOST = '124.**********'
PORT = 19530
COLLECTION_NAME = 'mo'#在 Milvus 中如何命名
DIMENSION = 1536 #嵌入的维度
OPENAI_ENGINE = 'text-embedding-ada-002'#使用哪种嵌入模型
openai.api_key = 'sk-***************'#您的 OpenAI 帐户密钥
QUERY_PARAM = {"metric_type": "L2","params": {"ef": 64},
}
connections.connect(host=HOST, port=PORT)
def embed(texts):embeddings = openai.Embedding.create(input=texts,engine=OPENAI_ENGINE)return [x['embedding'] for x in embeddings['data']]
collection = Collection(COLLECTION_NAME) 
def query(query, top_k = 5):text = queryres = collection.search(embed(text), anns_field='subject_embedding', param=QUERY_PARAM, limit = top_k, output_fields=['id', 'subject', 'answer'])print(res)
my_query = ('P、V操作是一种')query(my_query)

在这里插入图片描述

milvus 搜索 + thowee管道 搜索

ans_pipe = (pipe.input('subject').map('subject', 'vector', ops.text_embedding.dpr(model_name="facebook/dpr-ctx_encoder-single-nq-base"))#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('vector', 'vector', lambda x: x / np.linalg.norm(x, axis=0))#对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.flat_map('vector', ('id','score', 'answer','subject'), ops.ann_search.milvus_client(host='124.222.24.191',port='19530',collection_name='Test',output_fields=['answer','subject'])).output('subject','id','score','answer')
)
ans = ans_pipe('恶性肿瘤是什么?')
ans = DataCollection(ans)
ans.show()

8.milvus 删除

emb_collection.delete(expr=f"id == [{emb_id}]") # failedemb_collection.delete(expr=f"id in [{emb_id}]") # Success

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125861.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言之自定义类型_结构体篇(1)

目录 什么是结构? 结构体类型的声明 常规声明 特殊声明-匿名结构体 结构体变量的定义和初始化和访问 定义 初始化 访问 嵌套结构体 结构体的自引用 什么是结构体的自引用 NO1. NO2. 热门考点:结构体内存对齐 产生内存对齐 NO1 NO2 …

golang gin——controller 模型绑定与参数校验

controller 模型绑定与参数校验 gin框架提供了多种方法可以将请求体的内容绑定到对应struct上,并且提供了一些预置的参数校验 绑定方法 根据数据源和类型的不同,gin提供了不同的绑定方法 Bind, shouldBind: 从form表单中去绑定对象BindJSON, shouldB…

一个.NET开发的开源跨平台二维码生成库

虽然已经有很多生成二维码的解决方案,但是它们大多依赖System.Drawing,而.NET 6开始,使用System.Drawing操作图片,在生成解决方案或打包时,会收到一条警告,大致意思是System.Drawing仅在 ‘windows’ 上受支…

华为MateBook13 2021款(WRTD-WFE9)原装出厂Win10系统工厂模式安装包(含F10智能还原)

下载链接:https://pan.baidu.com/s/1yL7jFbklrln0UqWqxQ7fcw?pwd9nm1 系统自带一键智能还原功能、带有指纹、声卡、显卡、网卡等所有驱动、出厂主题壁纸、系统属性华为专属LOGO标志、Office办公软件、华为电脑管家等预装程序 所需要工具:16G或以上的U…

Linux上将进程、线程与CPU核绑定

CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合),从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时,它都可以由其关联列表中的任何CPU核执行。如果…

Java常见API---split()

package daysreplace;public class SplitTest {public static void main(String[] args) {String str"武汉市|孝感市|长沙市|北京市|上海市";String[] array str.split("\\|");System.out.println(array[0]);System.out.println(array[1]);System.out.pri…

Unity2D创建帧动画片段

文章目录 概述为角色创建动画Animator组件创建动画片段状态转移 其他文章 概述 动画是游戏中一种使对象表现出运动或变换的方式。当涉及到动画时,我们通常就会用到Animator组件。它允许我们在Unity编辑器中创建、管理和控制这些动画,并将其应用于游戏对…

推荐系统实践 笔记

诸神缄默不语-个人CSDN博文目录 这是我2020年写的笔记,我从印象笔记搬过来公开。 如果那年还在读本科的同学也许有印象,那年美赛出了道根据电商评论给商户提建议的题。其实这件事跟推荐系统关系不大,但我们当时病急乱投医,我打开…

【开发篇】十六、SpringBoot整合JavaMail实现发邮件

文章目录 0、相关协议1、SpringBoot整合JavaMail2、发送简单邮件3、发送复杂邮件 0、相关协议 SMTP(Simple Mail Transfer Protocol):简单邮件传输协议,用于发送电子邮件的传输协议POP3(Post Office Protocol - Versi…

RabbitMQ集群搭建详细介绍以及解决搭建过程中的各种问题——实操型

RabbitMQ集群搭建详细介绍以及解决搭建过程中的各种问题——实操型 1. 准备工作1.1 安装RabbitMQ1.2 简单部署搭建设计1.3 参考官网 2. RabbitMQ 形成集群的方法3. 搭建RabbitMQ集群3.1 部署架构3.2 rabbitmq集群基础知识3.2.1 关于节点名称(标识符)3.2.…

鱼眼相机去畸变(图像拉直/展开/矫正)算法及实战总结

本文介绍两种方法 1、经纬度矫正法 2、棋盘格矫正法 一、经纬度矫正法 1、算法说明 经纬度矫正法, 可以把鱼眼图想象成半个地球, 然后将地球展开成地图,经纬度矫正法主要是利用几何原理, 对图像进行展开矫正。 经过P点的入射光线…

掌握交易时机!

“您是否知道您选择购买和出售加密货币的时间会产生很大的影响?当然,大多数交易者都知道高价卖出和低价买入的基本知识。然而,在选择交易加密货币的最佳时机时,还需要考虑许多其他小细节。加密货币市场分析表明,一天中…