李沐深度学习记录5:13.Dropout

Dropout从零开始实现

import torch
from torch import nn
from d2l import torch as d2l# 定义Dropout函数
def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return X#torch.rand生成0-1之间的均匀分布随机数,将其值与dropout概率作比较,得到布尔类型结果由mask存储#布尔类型为0的则为随机丢弃置0的隐藏层单元,留下的则进行值的替换h-->h/(1-p)mask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)# 测试dropout函数
# X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
# print(X)
# print(dropout_layer(X, 0.))
# print(dropout_layer(X, 0.5))
# print(dropout_layer(X, 1.))#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):  #写一个模型类继承nn.Moduledef __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_training#定义三个全连接层和激活函数self.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) #第一层全连接层加激活函数# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)#训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

Dropout简洁实现

import torch
from torch import nn
from d2l import torch as d2l#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5#定义模型
net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),#第一个全连接层之后添加一个Dropout层nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),#第二个全连接层之后添加一个Dropout层nn.Dropout(dropout2),nn.Linear(256,10))
#参数初始化
def init_weights(m):if type(m)==nn.Linear:nn.init.normal_(m.weight,std=0.01)net.apply(init_weights)

在这里插入图片描述

#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练测试
num_epochs,lr=10,0.5
loss = nn.CrossEntropyLoss(reduction='none')
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127511.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

采集网页数据保存到文本文件---爬取古诗文网站

访问古诗文网站&#xff08;https://so.gushiwen.org/mingju/&#xff09; 会显示出这个页面&#xff0c;里面包含了很多的名句&#xff0c;点击某一个名句&#xff08;比如点击无处不伤心&#xff0c;轻尘在玉琴&#xff09;就会出现完整的古诗 我们点击鼠标右键&#xff0c;点…

IS-IS

二、IS-IS中的DIS与OSPF中的DR Level-1和Level-2的DIS是分别选举的&#xff0c;用户可以为不同级别的DIS选举设置不同的优先级。DIS的选举规则如下&#xff1a;DIS优先级数值最大的被选为DIS。如果优先级数值最大的路由器有多台&#xff0c;则其中MAC地址最大的路由器会成为DI…

缓冲流 java

字节缓冲池的默认大小 &#xff08;8192/byte&#xff09;字节输入输出流 字节缓冲输入接口也是 InputStream 读字节 实现类BufferedInputStream 字节缓冲输出接口也是 OutputStream 写字节 实现类BufferedOutputStream package BufferFlow;import CopysIO.Myconnectio…

html 笔记:CSS

1 什么是CSS CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素样式通常存储在样式表中 1.1 css的语法格式 1.1.1 选择器种类 HTML选择器&#xff1a; 重新定义HTML的某种标签的显示格式id选择器 对于HTML文档中的某个标签&#xff0c;定义它的显示格式…

柯桥生活口语学习,英语中初次见面,除了Nice to meet you,还能说什么?

第一印象非常重要。所以当你第一次见到某人时&#xff0c;留下一个好印象很重要&#xff0c;尤其是当你面对一个重要的工作或者面对某个对你来说可能非常特别的人时。 下面我列出了一些最常用的说“很高兴见到你”的表达方法&#xff0c;也包括对方的回答&#xff0c;除了nice …

数据结构----结构--非线性结构--图

数据结构----结构–非线性结构–图 一.图&#xff08;Graph&#xff09; 1.图的结构 图是多对多的结构 2.图的基本概念 图的基本概念为G(V,E) V是顶点的集合 E是边的集合 G是图 一个图其实是顶点和边的二元组合 观察下图,思考V和E集合中的元素分别都是什么 V{V1,V2,V…

阿里云RDS关系型数据库详细介绍_多版本数据库说明

阿里云RDS关系型数据库大全&#xff0c;关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等&#xff0c;NoSQL数据库如Redis、Tair、Lindorm和MongoDB&#xff0c;阿里云百科分享阿里云RDS关系型数据库大全&#xff1a; 目录 阿里云RDS关系型数据库大全 …

Springboot——jxls实现同sheet多个列表展示

文章目录 前言制定模板1、限定模板数据的范围2、设定报表展示项 编写测试类1、将xls模板文件放于 resource 下的 doc文件夹中2、导入依赖文件3、编写接口和导出逻辑 效果预览结论 前言 在之前的博客中Springboot——使用jxls实现excel模板导出excel&#xff0c;具体说明了jxls…

Springboot 音乐网站管理系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 音乐网站管理系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统 具有完整的源代码和数据库&…

数据结构刷题训练——二叉树篇(一)

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

【已解决】Python打包文件执行报错:ModuleNotFoundError: No module named ‘pymssql‘

【已解决】Python打包文件执行报错&#xff1a;ModuleNotFoundError: No module named pymssql 1、问题2、原因3、解决 1、问题 今天打包一个 tkinter pymssql 的项目的时候&#xff0c;打包过程很顺利&#xff0c;但是打开软件的时候&#xff0c;报错 ModuleNotFoundError: …

使用企业订货系统后的效果|软件定制开发|APP小程序搭建

使用企业订货系统后的效果|软件定制开发|APP小程序搭建 企业订货系统是一种高效的采购管理系统&#xff0c;它可以帮助企业更好地管理采购流程&#xff0c;降低采购成本&#xff0c;提高采购效率。 可以帮助企业提高销售效率和降低成本的软件工具。使用该系统后&#xff0c;企业…