【垃圾回收概述及算法】

文章目录

  • 1. 垃圾回收概述及算法
  • 2. 垃圾回收相关算法
    • 2.1 标记阶段:引用计数算法
    • 2.2 标记阶段:可达性分析算法
    • 2.3 对象的 finalization 机制
      • 2.3.1 一个对象是否可回收的判断
    • 2.4 清除阶段:标记-清除算法
    • 2.5 清除阶段:复制算法
    • 2.6 清除阶段:标记-压缩(整理)算法
    • 2.7 小结

1. 垃圾回收概述及算法

什么是垃圾?
垃圾是指在运行程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾。
如果不及时对内存中的垃圾进行清理,那么,这些垃圾对象所占的内存空间会一直保留到应用程序的结束,被保留的空间无法被其它对象使用,甚至可能导致内存溢出

Java 垃圾回收机制:自动内存管理,无需开发人员手动参与内存的分配与回收,这样降低内存泄漏内存溢出的风险

GC 主要关注的区域:GC 主要关注于方法区 和堆中的垃圾收集

  • 频繁收集 Young 区
  • 较少收集 Old 区
  • 基本不收集 Perm 区(元空间)

2. 垃圾回收相关算法

对象存活判断引用计数算法可达性分析算法

2.1 标记阶段:引用计数算法

对每个对象保存一个整型的引用计数器属性。用于记录对象被引用的情况。

对于一个对象 A,只要有任何一个对象引用了 A,则 A 的引用计数器就加 1;当引用失效时,引用计数器就减 1。只要对象 A 的引用计数器的值为 0,即表示对象 A 不可能再被使用,可进行回收。

优点:

  • 实现简单,垃圾对象便于辨识;
  • 判定效率高,回收没有延迟性。

缺点:

  • 它需要单独的字段存储计数器,这样的做法增加了存储空间的开销
  • 每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销
  • 引用计数器有一个严重的问题,即无法处理循环引用的情况。这是一条致命缺陷,导致在 Java 的垃圾回收器中没有使用这类算法。

在这里插入图片描述

2.2 标记阶段:可达性分析算法

该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生。

基本思路:

  • 可达性分析算法是以根对象集合(GCRoots)为起始点,按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达

  • 如果目标对象没有任何引用链相连,则是不可达的,就意味着该对象己经死亡,可以标记为垃圾对象。

在 Java 语言中,GC Roots 包括以下几类元素:

  • 虚拟机栈(局部变量表)中引用的对象
  • 本地方法栈内 JNI(通常说的本地方法)引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中常量引用的对象
    • 比如:字符串常量池(String Table)里的引用
  • 所有被同步锁 synchronized 持有的对象
  • Java 虚拟机内部的引用。
    • 基本数据类型对应的 Class 对象,一些常驻的异常对象(如:NullPointerException、OutOfMemoryError),系统类加载器。
  • 反映 java 虚拟机内部情况的 JMXBean、JVMTI 中注册的回调、本地代码缓存等。

分代收集和局部回收(PartialGC)
只针对 Java 堆中的某一块区域进行垃圾回收(比如:典型的只针对新生代)

注意

如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性快照中进行。这点不满足的话分析结果的准确性就无法保证。
这点也是导致 GC 进行时必须“stop The World”的一个重要原因。
即使是号称(几乎)不会发生停顿的 CMS 收集器中,枚举根节点时也是必须要停顿的。

2.3 对象的 finalization 机制

finalization机制:来允许开发人员提供对象被销毁之前的自定义处理逻辑

当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,总会先调用这个对象的 finalize()方法。
finalize() 方法允许在子类中被重写,用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件套接字数据库连接等。

2.3.1 一个对象是否可回收的判断

虚拟机中的对象可能的三种状态

  • 可触及的:从根节点开始,可以到达这个对象。
  • 可复活的:对象的所有引用都被释放,但是对象有可能在 finalize()中复活。
  • 不可触及的:对象的 finalize()被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为finalize()只会被调用一次

判定一个对象 objA 是否可回收,至少要经历两次标记过程:

  1. 如果对象 objA 到 GC Roots 没有引用链,则进行第一次标记。
  2. 进行筛选,判断此对象是否有必要执行 finalize()方法
  3. 如果对象 objA 没有重写 finalize()方法,或者 finalize()方法已经被虚拟机调用过,则虚拟机视为“没有必要执行”,objA 被判定为不可触及的
  4. 如果对象 objA 重写了 finalize()方法,且还未执行过,那么 objA 会被插入到 F-Queue 队列中,由一个虚拟机自动创建的、低优先级的 Finalizer 线程触发其 finalize()方法执行。
  5. finalize()方法是对象逃脱死亡的最后机会,稍后 GC 会对 F-Queue 队列中的对象进行第二次标记。如果 objA 在 finalize()方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,objA 会被移出“即将回收”集合。

2.4 清除阶段:标记-清除算法

当成功区分出内存中存活对象和死亡对象后,GC 接下来的任务就是执行垃圾回收,释放掉无用对象所占用的内存空间,以便有足够的可用内存空间为新对象分配内存。

目前在 JVM 中比较常见的三种垃圾收集算法:标记一清除算法(Mark-Sweep)、复制算法(copying)、标记-压缩算法(Mark-Compact)


标记-清除算法(Mark-Sweep):

当堆中的有效内存空间(available memory)被耗尽的时候,就会停止整个程序(也被称为 stop the world),然后进行两项工作,第一项则是标记,第二项则是清除

  • 标记<:Collector 从引用根节点开始遍历,标记所有被引用的对象。一般是在对象的 Header 中记录为可达对象。
  • 清除:Collector 对堆内存从头到尾进行线性的遍历,如果发现某个对象在其 Header 中没有标记为可达对象,则将其回收

在这里插入图片描述

何为清除?
这里所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里。下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够,就存放覆盖原有的地址。

缺点

  • 标记清除算法的效率不算高
  • 在进行 GC 的时候,需要停止整个应用程序,用户体验较差
  • 这种方式清理出来的空闲内存是不连续的,产生内存碎片,需要维护一个空闲列表

2.5 清除阶段:复制算法

将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收
在这里插入图片描述

优点

  • 没有标记和清除过程,实现简单,运行高效
  • 复制过去以后保证空间的连续性,不会出现“碎片”问题。

缺点

  • 此算法的缺点也是很明显的,就是需要两倍的内存空间
  • 对于 G1 这种分拆成为大量 region 的 GC,复制而不是移动,意味着 GC 需要维护 region 之间对象引用关系,不管是内存占用或者时间开销也不小(因为堆中对象换地方了,所有引用此对象的引用地址都需要变)

应用场景
在新生代的垃圾回收,一次通常可以回收 70% - 99% 的内存空间。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。

2.6 清除阶段:标记-压缩(整理)算法

  1. 第一阶段和标记清除算法一样,从根节点开始标记所有被引用对象
  2. 第二阶段将所有的存活对象压缩到内存的一端,按顺序排放。
  3. 之后,清理边界外所有的空间。
    在这里插入图片描述

标记-压缩算法的最终效果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩(Mark-Sweep-Compact)算法。

优点

  • 消除了标记-清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM 只需要持有一个内存的起始地址即可。
  • 消除了复制算法当中,内存减半的高额代价。

缺点

  • 从效率上来说,标记-整理算法要低于复制算法。
  • 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址
  • 移动过程中,需要全程暂停用户应用程序。即:STW

2.7 小结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/129480.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

笔记36:CNN的多通道卷积到底是什么样的

总结&#xff1a; &#xff08;1&#xff09;输入卷积层的feature_map的通道数&#xff0c;就是该卷积层每个卷积核所含有的通道数 &#xff08;2&#xff09;输出卷积层的feature_map的通道数&#xff0c;就是该卷积层所含有的卷积核的个数 a a a a 解释&#xff1a;【…

测开 | Vue速查知识点

文章目录 Vue知识1. Vue 概述2. Vue 代码格式3. Vue 指令3.1 v-bind & v-model3.2 v-on3.3 v-if和v-show3.4 v-for 4. 生命周期 Vue知识 1. Vue 概述 简介&#xff1a; Vue.js&#xff08;读音 /vjuː/, 类似于 view&#xff09; 是一套构建用户界面的 渐进式框架。与其他…

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN-BiLST…

论文解析——异构多芯粒神经网络加速器

作者 朱郭益, 马胜&#xff0c;张春元, 王波&#xff08;国防科技大学计算机学院&#xff09; 摘要 随着神经网络技术的快速发展, 出于安全性等方面考虑, 大量边缘计算设备被应用于智能计算领域。首先&#xff0c;设计了可应用于边缘计算的异构多芯粒神经网络加速器其基本结构…

Unity中Shader光强与环境色

文章目录 前言一、实现下图中的小球接受环境光照实现思路&#xff1a;1、在Pass中使用前向渲染模式2、使用系统变量 _LightColor0 获取场景中的主平行灯 二、返回环境中主环境光的rgb固定a(亮度)&#xff0c;小球亮度还随之改变的原因三、获取Unity中的环境光的颜色1、Color模式…

帮微软语音助手纠正“阿弥陀佛”“e”字错误发音的技巧

一、前言 微软AI文字转语音助手&#xff0c;现已被大家普便应用。最近在传统文化佛学名词的发音转换应用中&#xff0c;发现了一个致命的错误。那就是“阿弥陀佛”中的“阿”字的“a”发音&#xff0c;被误读为“e”。说起这个重大的错误&#xff0c;佛门大德南怀瑾老师也一再…

ES 关于 remote_cluster 的一记小坑

最近有小伙伴找到我们说 Kibana 上添加不了 Remote Cluster&#xff0c;填完信息点 Save 直接跳回原界面了。具体页面&#xff0c;就和没添加前一样。 我们和小伙伴虽然隔着网线但还是进行了深入、详细的交流&#xff0c;梳理出来了如下信息&#xff1a; 两个集群&#xff1a;…

Matlab参数估计与假设检验(举例解释)

参数估计分为点估计和区间估计&#xff0c;在matlab中可以调用namefit()函数来计算参数的极大似然估计值和置信区间。而数据分析中用得最多的是正态分布参数估计。 例1 从某厂生产的滚珠中抽取10个&#xff0c;测得滚珠的直径&#xff08;单位&#xff1a;mm&#xff09;为x[…

AI绘画-Stable Diffusion笔记

软件&#xff1a;Stable Diffusion 视频教程来自 https://www.bilibili.com/video/BV1As4y127HW/?spm_id_from333.337.search-card.all.click 提示词 提示词类别 内容型提示词 人物主题特征&#xff1a; 服饰穿搭&#xff1a;white dress 发型发色&#xff1a;blonde hair,l…

2.1 Qemu系统模拟:简介

目录 1 后端/加速器2 特性简介3 运行 1 后端/加速器 系统模拟主要用于在host设备上运行guest OSQEMU支持多种hypervisors,同时也支持JIT模拟方案&#xff08;TCG&#xff09; 例如从上表我们可以看出&#xff0c;运行在x86硬件上的Linux系统支持KVM,Xen,TCG 2 特性简介 提供…

智能AI创作系统ChatGPT详细搭建教程/AI绘画系统/支持GPT联网提问/支持Prompt应用/支持国内AI模型

一、智能AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统&#xff0c;支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作…

TestNG学会了,Java单元测试你就掌握了一半!

01、TestNG 01、简介 在日常测试工作中&#xff0c;经常需要用写代码和脚本来完成一些测试任务&#xff0c;比如自动化测试&#xff0c;接口测试&#xff0c;单元测试等。当写完若干脚本后&#xff0c;需要对这些脚本进行组织、管理和结果统计&#xff0c;这个时候就需要有一…