【机器学习】svm

参考

sklearn中SVC中的参数说明与常用函数_sklearn svc参数-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/transformed/article/details/90437821

参考PYthon 教你怎么选择SVM的核函数kernel及案例分析_clf=svm.svc(kernel=)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/c1z2w3456789/article/details/105247565

四种核函数

四种核函数在四种不同分布数据上的表现

博主总结:

linear、poly:

非线性数据集:linear和poly核函数在上表现会浮动,如果数据相对线性可分,则表现不错,如果是像环形数据那样彻底不可分的,则表现糟糕。

线性数据集:linear和poly核函数即便有扰动项也可以表现不错,可见poly核函数虽然也可以处理非线性情况,但更偏向于线性的功能。

sigmoid:

Sigmoid核函数就比较尴尬了,它在非线性数据上强于两个线性核函数,但效果明显不如rbf,它在线性数据上完全比不上线性的核函数们,对扰动项的抵抗也比较弱,所以它功能比较弱小,很少被用到。

rbf:

rbf核函数基本在任何数据集上都表现不错,属于比较万能的核函数。

python中svm使用

clf = svm.SVC(kernel='rbf', class_weight='balanced', C=5, gamma=0.3, max_iter=3000, tol=0.001, probability=True)

C:根据官方文档,这是一个软间隔分类器,对于在边界内的点有惩罚系数C,C的取值在0-1之间,默认值为1.0。C越大代表这个分类器对在边界内的噪声点的容忍度越小,分类准确率高,但是容易过拟合,泛化能力差。所以一般情况下,应该适当减小C,对在边界范围内的噪声有一定容忍。

class_weight:默认为None,给每个类别分别设置不同的惩罚参数C,如果没有给,则会给所有类别都给C=1,即前面指出的参数C.

tol:停止训练的误差精度,默认值为0.001

probability:默认为False,决定最后是否按概率输出每种可能的概率,但需注意最后的预测函数应改为clf.predict_proba。

max_iter:默认为-1,最大迭代次数,如果为-1,表示不限制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/129524.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

75.颜色分类

原地排序&#xff1a;空间复杂度为1 class Solution { public:void sortColors(vector<int>& nums) {if(0){//法一&#xff1a;单指针两个遍历int nnums.size();int ptr0;for(int i0;i<n;i){if(nums[i]0){swap(nums[i],nums[ptr]);ptr;}}for(int iptr;i<n;i){…

1.1了解python_python量化实用版教程(初级)

Python 特点 Python 安装和使用的编译器选择不展开。 Python 是一种高级编程语言&#xff0c;具有以下特点&#xff1a; - 简单易学&#xff1a;Python 语法简单&#xff0c;易于学习和理解。 - 开放源代码&#xff1a;Python 是开源的&#xff0c;可以免费使用&#…

ctfshow-web9(奇妙的ffifdyop绕过)

尝试万能密码登录&#xff0c;没有任何回显 尝试扫描目录&#xff0c;这里不知道为啥御剑什么都扫不到&#xff0c;使用dirsearch可以扫到robots.txt 查看robots协议 访问下载index.phps 查看index.phps 简单审计一下php代码&#xff1a; $password$_POST[password]; if(strl…

直线模组的应用场景

直线模组是一种由直线导轨、滑块、驱动部件等组成的直线运动系统&#xff0c;具有高精度、高速度、高效率等特点。直线模组被广泛应用于各种机械设备中&#xff0c;以下是其主要的应用场景&#xff1a; 1、数控机床&#xff1a;直线模组是数控机床中的重要组成部分&#xff0c;…

Bootstrap对溢出内容的两种处理:滚动条和隐藏两种方式

Bootstrap中定义了以下两个类来处理内容溢出的情况&#xff1a; 类overflow-auto&#xff1a;在固定宽度和高度的元素上&#xff0c;如果内容溢出了元素&#xff0c;将生成一个垂直滚动条&#xff0c;通过滚动条可以查看溢出的内容。 类overflow-hidden:在固定宽度和高度的元素…

多路彩灯控制器LED流水灯花型verilog仿真图视频、源代码

名称&#xff1a;多路彩灯控制器LED流水灯花型verilog 软件&#xff1a;Quartus 语言&#xff1a;Verilog 代码功能&#xff1a; 用quartus和modelism&#xff0c;设计一个多路彩灯控制器&#xff0c;能够使花型循环变化&#xff0c;具有复位清零功能&#xff0c;并可以选择…

蓝牙技术|Matter或能改变中国智能家居市场,蓝牙技术将得到进一步应用

近年来&#xff0c;智能家居开放协议标准Matter&#xff08;目前版本 1.1&#xff09;由连接标准联盟发布&#xff0c;该联盟是一个由数百家公司组成的全球性机构&#xff0c;旨在提供与物联网 (IoT) 相关的标准。例如&#xff0c;Matter 用于允许 Amazon Alexa、Apple Home、G…

1.3.OpenCV技能树--第一单元--图像的基础操作(进阶篇)

目录 1.文章内容来源 2.图像的进阶操作 2.1.边界填充 2.2.数值计算 2.3.图像融合 2.4.图像保存 2.5.视频读取 3.课后习题代码复现 3.1.问题一图像像素颜色 3.2.问题二图片黑客帝国化 3.3.问题三梅西的足球轨迹 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.c…

排序算法——直接插入排序

一、介绍 插入排序就是将前两个元素排好&#xff0c;再将第三个元素通过与前边的元素比较后插入适当的位置&#xff0c;再将第四个元素插入&#xff0c;不断重复插入与前边元素比较的操作&#xff0c;直到将元素都排列好。 演示如下&#xff1a; 视频演示&#xff1a;…

GB28181学习(六)——实时视音频点播(数据传输部分)

GB28181系列文章&#xff1a; 总述&#xff1a;https://blog.csdn.net/www_dong/article/details/132515446 注册与注销&#xff1a;https://blog.csdn.net/www_dong/article/details/132654525 心跳保活&#xff1a;https://blog.csdn.net/www_dong/article/details/132796…

千兆以太网传输层 UDP 协议原理与 FPGA 实现(UDP接收)

文章目录 前言心得体会一、 UDP 协议简单回顾二、UDP接收实现三、完整代码展示四、仿真测试(1)模拟电脑数据发送,(2)测试顶层文件编写(3)仿真文件(4)仿真波形前言 在前面我们对以太网 UDP 帧格式做了讲解,UDP 帧格式包括前导码+帧界定符、以太网头部数据、IP 头部数…

断点测试怎么做,一文教你用Charles 工具做好接口测试!

在测试工作过程中&#xff0c;我们经常会在程序的某一行或者某一环节设置断点&#xff0c;在程序请求的过程中&#xff0c;修改断点处的参数、请求或者响应&#xff0c;这就是所谓的断点测试。这类断点测试主要用于接口测试。 断点测试可以通过查看接口返回数据可以方便定位是前…