强化学习------Qlearning算法

简介

Q learning 算法是一种value-based的强化学习算法,Q是quality的缩写,Q函数 Q(state,action)表示在状态state下执行动作actionquality, 也就是能获得的Q value是多少。算法的目标是最大化Q值,通过在状态state下所有可能的动作中选择最好的动作来达到最大化期望reward

Q learning算法使用Q table来记录不同状态下不同动作的预估Q值。在探索环境之前,Q table会被随机初始化,当agent在环境中探索的时候,它会用贝尔曼方程(ballman equation)来迭代更新Q(s,a), 随着迭代次数的增多,agent会对环境越来越了解,Q 函数也能被拟合得越来越好,直到收敛或者到达设定的迭代结束次数。
伪代码如下:
在这里插入图片描述
整个算法就是一直不断更新 Q table 里的值, 然后再根据新的值来判断要在某个 state 采取怎样的 action. Qlearning 是一个 off-policy 的算法, 因为里面的 max action 让 Q table 的更新可以不基于正在经历的经验(可以是现在学习着很久以前的经验,甚至是学习他人的经验). 不过这一次的例子, 我们没有运用到 off-policy, 而是把 Qlearning 用在了 on-policy 上, 也就是现学现卖, 将现在经历的直接当场学习并运用. On-policy 和 off-policy 的差别我们会在之后的 [Deep Q network (off-policy)] 学习中见识到. 而之后的教程也会讲到一个 on-policy (Sarsa) 的形式, 我们之后再对比.

算法实战

我们使用openAI的gym中的CliffWalking-v0作为环境

#!/usr/bin/env python 
# -*- coding:utf-8 -*-
import numpy as np
import gym
import time
import gridworld#Sarsa算法
class QLearning():def __init__(self,num_states,num_actions,e_greed=0.1,lr=0.9,gamma=0.8):#建立Q表格self.Q = np.zeros((num_states,num_actions))self.e_greed = e_greed   #探索概率self.num_states = num_statesself.num_actions = num_actionsself.lr = lr   #学习率self.gamma = gamma #折扣因子def predict(self,state):"""通过当前状态预测下一个动作:param state::return:"""#获取当前状态的所有动作的切片Q_list = self.Q[state,:]#随机选取其中最大值中的某一个(防止存在多个最大值时,总是选最前面的问题)action = np.random.choice(np.flatnonzero(Q_list == Q_list.max()))return  actiondef action(self,state):"""选取动作:param state::return:"""#探索,随机选择一个动作if np.random.uniform(0,1) < self.e_greed:action = np.random.choice(self.num_actions)else:   #直接选取最大Q值的动作action = self.predict(state)return actiondef learn(self,state,action,reward,next_state,done):cur_Q = self.Q[state,action]# 当游戏结束时,不存在next_action和next_statetarget_Q = reward + (1-float(done))*self.gamma*self.Q[next_state,:].max()self.Q[state,action] += self.lr*(target_Q - cur_Q)#训练
def train_episode(env,agent,is_render):total_reward = 0#初始化环境state,_ = env.reset()while True:action = agent.action(state)#执行动作返回结果next_state,reward,done,_,_ = env.step(action)#更新参数agent.learn(state,action,reward,next_state,done)#循环执行state = next_statetotal_reward += rewardif is_render:env.render()if done:breakreturn  total_reward
#测试
def test_episode(env,agent,is_render=False):total_reward = 0# 初始化环境state,_ = env.reset()while True:action = agent.predict(state)next_state, reward, done, _,_ = env.step(action)state = next_statetotal_reward += rewardenv.render()time.sleep(0.5)if done:breakreturn total_reward
#训练
def train(env,episodes=500,lr=0.1,gamma=0.9,e_greed=0.1):agent = QLearning(num_states = env.observation_space.n,num_actions = env.action_space.n,lr = lr,gamma = gamma,e_greed = e_greed)is_render = False#先训练episodes次for e in range(episodes):ep_reward = train_episode(env,agent,is_render)print('Episode %s : reward= %.1f'%(e,ep_reward))#每执行50轮就显示一次if e%50 == 0:is_render = Trueelse:is_render = False#训练结束后,我i们测试模型test_reward = test_episode(env,agent)print('test_reward= %.1f' % (test_reward))if __name__ == '__main__':env = gym.make("CliffWalking-v0")env = gridworld.CliffWalkingWapper(env)train(env)

运行效果

在这里插入图片描述

另附工具类

用于可视化游戏界面

#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.# -*- coding: utf-8 -*-import gym
import turtle
import numpy as np# turtle tutorial : https://docs.python.org/3.3/library/turtle.htmldef GridWorld(gridmap=None, is_slippery=False):if gridmap is None:gridmap = ['SFFF', 'FHFH', 'FFFH', 'HFFG']env = gym.make("FrozenLake-v0", desc=gridmap, is_slippery=False)env = FrozenLakeWapper(env)return envclass FrozenLakeWapper(gym.Wrapper):def __init__(self, env):gym.Wrapper.__init__(self, env)self.max_y = env.desc.shape[0]self.max_x = env.desc.shape[1]self.t = Noneself.unit = 50def draw_box(self, x, y, fillcolor='', line_color='gray'):self.t.up()self.t.goto(x * self.unit, y * self.unit)self.t.color(line_color)self.t.fillcolor(fillcolor)self.t.setheading(90)self.t.down()self.t.begin_fill()for _ in range(4):self.t.forward(self.unit)self.t.right(90)self.t.end_fill()def move_player(self, x, y):self.t.up()self.t.setheading(90)self.t.fillcolor('red')self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)def render(self):if self.t == None:self.t = turtle.Turtle()self.wn = turtle.Screen()self.wn.setup(self.unit * self.max_x + 100,self.unit * self.max_y + 100)self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,self.unit * self.max_y)self.t.shape('circle')self.t.width(2)self.t.speed(0)self.t.color('gray')for i in range(self.desc.shape[0]):for j in range(self.desc.shape[1]):x = jy = self.max_y - 1 - iif self.desc[i][j] == b'S':  # Startself.draw_box(x, y, 'white')elif self.desc[i][j] == b'F':  # Frozen iceself.draw_box(x, y, 'white')elif self.desc[i][j] == b'G':  # Goalself.draw_box(x, y, 'yellow')elif self.desc[i][j] == b'H':  # Holeself.draw_box(x, y, 'black')else:self.draw_box(x, y, 'white')self.t.shape('turtle')x_pos = self.s % self.max_xy_pos = self.max_y - 1 - int(self.s / self.max_x)self.move_player(x_pos, y_pos)class CliffWalkingWapper(gym.Wrapper):def __init__(self, env):gym.Wrapper.__init__(self, env)self.t = Noneself.unit = 50self.max_x = 12self.max_y = 4def draw_x_line(self, y, x0, x1, color='gray'):assert x1 > x0self.t.color(color)self.t.setheading(0)self.t.up()self.t.goto(x0, y)self.t.down()self.t.forward(x1 - x0)def draw_y_line(self, x, y0, y1, color='gray'):assert y1 > y0self.t.color(color)self.t.setheading(90)self.t.up()self.t.goto(x, y0)self.t.down()self.t.forward(y1 - y0)def draw_box(self, x, y, fillcolor='', line_color='gray'):self.t.up()self.t.goto(x * self.unit, y * self.unit)self.t.color(line_color)self.t.fillcolor(fillcolor)self.t.setheading(90)self.t.down()self.t.begin_fill()for i in range(4):self.t.forward(self.unit)self.t.right(90)self.t.end_fill()def move_player(self, x, y):self.t.up()self.t.setheading(90)self.t.fillcolor('red')self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)def render(self):if self.t == None:self.t = turtle.Turtle()self.wn = turtle.Screen()self.wn.setup(self.unit * self.max_x + 100,self.unit * self.max_y + 100)self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,self.unit * self.max_y)self.t.shape('circle')self.t.width(2)self.t.speed(0)self.t.color('gray')for _ in range(2):self.t.forward(self.max_x * self.unit)self.t.left(90)self.t.forward(self.max_y * self.unit)self.t.left(90)for i in range(1, self.max_y):self.draw_x_line(y=i * self.unit, x0=0, x1=self.max_x * self.unit)for i in range(1, self.max_x):self.draw_y_line(x=i * self.unit, y0=0, y1=self.max_y * self.unit)for i in range(1, self.max_x - 1):self.draw_box(i, 0, 'black')self.draw_box(self.max_x - 1, 0, 'yellow')self.t.shape('turtle')x_pos = self.s % self.max_xy_pos = self.max_y - 1 - int(self.s / self.max_x)self.move_player(x_pos, y_pos)if __name__ == '__main__':# 环境1:FrozenLake, 可以配置冰面是否是滑的# 0 left, 1 down, 2 right, 3 upenv = gym.make("FrozenLake-v0", is_slippery=False)env = FrozenLakeWapper(env)# 环境2:CliffWalking, 悬崖环境# env = gym.make("CliffWalking-v0")  # 0 up, 1 right, 2 down, 3 left# env = CliffWalkingWapper(env)# 环境3:自定义格子世界,可以配置地图, S为出发点Start, F为平地Floor, H为洞Hole, G为出口目标Goal# gridmap = [#         'SFFF',#         'FHFF',#         'FFFF',#         'HFGF' ]# env = GridWorld(gridmap)env.reset()for step in range(10):action = np.random.randint(0, 4)obs, reward, done, info = env.step(action)print('step {}: action {}, obs {}, reward {}, done {}, info {}'.format(\step, action, obs, reward, done, info))env.render()  # 渲染一帧图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130052.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于三平面映射的地形纹理化【Triplanar Mapping】

你可能遇到过这样的地形&#xff1a;悬崖陡峭的一侧的纹理拉伸得如此之大&#xff0c;以至于看起来不切实际。 也许你有一个程序化生成的世界&#xff0c;你无法对其进行 UV 展开和纹理处理。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 三平面映射&#xff08;Trip…

【可视化大屏】用该软件,无代码,更易用

奥威BI系统是一种自助式BI数据可视化工具&#xff0c;它可以在无代码的情况下&#xff0c;通过简单的拖拉拽实现数据可视化&#xff0c;并支持多种数据源接入&#xff0c;包括各类数据库、Excel、API接口等&#xff0c;只需简单的输入数据源连接地址即可&#xff0c;操作非常方…

[UE虚幻引擎] DTCopyFile 插件说明 – 使用蓝图拷贝复制文件 (Windows)

本插件可以在虚幻引擎中使用蓝图对系统的其他文件进行拷贝复制操作。 1. 节点说明 Async Copy File ​ 异步复制文件 Param Source File : 要复制的源文件的完整路径。Param Target File : 要复制的目标文件的完整路径。Param Force Copy : 如果为true&#xff0c;则如果目标…

大模型部署手记(13)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+LangChain+摘要问答

1.简介&#xff1a; 组织机构&#xff1a;Meta&#xff08;Facebook&#xff09; 代码仓&#xff1a;GitHub - facebookresearch/llama: Inference code for LLaMA models 模型&#xff1a;chinese-alpaca-2-7b-hf、text2vec-large-chinese 下载&#xff1a;使用百度网盘和…

手机没电用日语怎么说?你会吗?柯桥常用日语学习

手机没电在日语里可以表达为: 1. スマホの電池が切れた。 直接使用“電池が切れる”来表示电池没有电了。 2. スマホのバッテリーが空に15857575376なった。 “バッテリーが空になる”也是表示电量耗尽的常用表达。 3. 充電が必要だ。 “充電が必要”意思是需要充电。 4…

linux 安装下载conda并创建虚拟环境

目录 1. 下载安装2. 创建虚拟环境1. 下载安装 在window操作系统中下载anconda包,并通过scp传输到ubuntu操作系统 具体anconda包在如下界面: anconda包 目录 博主选择了最新的包:Anaconda3-2023.09-0-Linux-x86_64.sh 通过scp传输到ubuntu操作系统中: 并在ubuntu操作系…

微信小程序--》从模块小程序项目案例23.10.09

配置导航栏 导航栏是小程序的门户&#xff0c;用户进来第一眼看到的便是导航栏&#xff0c;其起着对当前小程序主题的概括。而我们 新建的小程序 时&#xff0c;第一步变开始配置导航栏。如下&#xff1a; 配置tabBar 因为配置tabBar需要借助字体图标&#xff0c;我这里平常喜…

读懂MCU产品选型表

读懂MCU产品选型表 产品状态 MP&#xff1a;Mass Production&#xff08;大规模生产&#xff09; - 这表示产品已经进入了大规模生产阶段&#xff0c;可以大量生产并提供给市场。UD&#xff1a;Under Development&#xff08;开发中&#xff09; - 这表示产品目前正在开发阶段…

京东数据分析平台:2023年8月京东奶粉行业品牌销售排行榜

鲸参谋监测的京东平台8月份奶粉市场销售数据已出炉&#xff01; 鲸参谋数据显示&#xff0c;8月份京东平台上奶粉的销售量将近700万件&#xff0c;环比增长约15%&#xff0c;同比则下滑约19%&#xff1b;销售额将近23亿元&#xff0c;环比增长约4%&#xff0c;同比则下滑约3%。…

leetCode 167.两数之和 || - 输入有序数组 双指针解法

167. 两数之和 II - 输入有序数组 - 力扣&#xff08;LeetCode&#xff09; 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] …

KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(2)

接前一篇文章&#xff1a;KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx&#xff08;1&#xff09; 上回书说到drmModeAddFB、drmModeAddFB2和drmModeAddFB2WithModifiers函数最终“三分归一统”&#xff0c;在内核层统一调用到drm_mode_addfb2函数。 这里我们先不急…

从零开始的C++(八)

1.类和模版的补充&#xff1a; 1、本质&#xff1a;原本由程序员自己写的一些高度重复的函数改由编译器来写。 模版实例化&#xff1a;编译阶段生成函数&#xff1b;分为隐式调用和显示调用两种&#xff0c;隐式调用是由编译器根据传入参数的类型来决定模版的类型&#xff0c…