bert入门

bert是什么

        BERT(Bidirectional Encoder Representations from Transformers)是一种自然语言处理(NLP)中的预训练模型,它是基于Transformer架构的一种深度学习模型。BERT的主要目标是在大规模文本语料库上进行预训练,然后可以通过微调来用于各种NLP任务,例如文本分类、命名实体识别、问答等。

         BERT的核心思想是在大规模文本语料库上进行预训练。在大量的文本数据上进行了自我学习,以学习单词、短语和句子之间的语义关系。BERT使用了两个预训练任务来训练模型:

  • 掩盖语言建模(Masked Language Modeling,MLM):在输入文本中,随机选择一些单词并将它们替换为特殊的"[MASK]"标记,然后模型的任务是预测这些标记的原始单词。
  • 下一句预测(Next Sentence Prediction,NSP):模型接受一对句子作为输入,并预测这两个句子是否是连续的。 

        BERT在通过大量数据进行预训练后,会生成一个预训练模型。预训练模型包含了在大规模文本语料库上学习到的单词、短语和句子的语义表示。这个模型可以用于各种NLP任务,同时也可以通过微调来进一步优化,以适应特定任务的需求。

bert能干什么

        BERT还是比较强大的,可以在多种NLP任务中发挥作用。

  1. 文本分类:BERT可以用于对文本进行分类,例如情感分析(判断文本是正面还是负面情感)、主题分类等。通过微调BERT模型,可以对不同的文本进行分类。

  2. 命名实体识别(NER):BERT可以识别文本中的命名实体,如人名、地名、组织名等。可以用于信息提取、文本注释等任务中。

  3. 问答系统(QA):BERT可以用于构建问答系统,它可以理解问题并在文本中找到相关的答案。在搜索引擎、智能助手和知识图谱等应用中具有重要价值。

  4. 机器翻译:BERT可以用于机器翻译任务,通过将源语言文本编码为BERT表示,然后将其解码为目标语言文本。

  5. 文本生成:BERT可以用于生成文本,包括生成摘要、自动化写作、对话生成等任务。结合生成型模型,BERT可以生成自然流畅的文本。

  6. 信息检索:BERT可以改进搜索引擎的性能,通过更好地理解用户查询来提供相关的搜索结果。

  7. 语言理解:BERT的预训练表示可以用于许多其他语言理解任务,如自动摘要、文本聚类、句法分析等。

  8. 语义相似度计算:BERT可以用于计算两个文本之间的语义相似度,这在信息检索和推荐系统中很有用。

  9. 情感分析:BERT可以分析文本中的情感,用于了解用户对产品、服务或事件的情感倾向。

  10. 对话系统:BERT可以用于构建智能对话系统,能够理解和生成自然语言对话。

bert如何用

        使用BERT模型通常分为两个主要步骤:预训练和微调。

        首先,对BERT进行预训练,生成一个预训练模型。预训练模型包含了在大规模文本语料库上学习到的单词、短语和句子的语义表示。

        BERT应用分为预训练、微调、推理三个步骤。

        预训练:首先要准备数据,需要大规模的文本数据。这些数据需要进行预处理,包括分词、标记化、去除停用词等,以便将其转化为模型可接受的格式。

        然后,需要获取经过预训练的BERT模型,通常可以在互联网上或深度学习框架的模型库中找到预训练的BERT模型权重。使用预处理后的文本数据,对BERT模型进行预训练。这一步通常需要大量计算资源和时间,因此常常在大型计算集群或云平台上进行。

        训练完成后,将生成预训练的BERT模型,供后续微调和应用。

        微调:准备与该任务相关的标记化数据。例如,进行文本分类,那么需要一个包含文本和标签的数据集。加载之前预训练好的BERT模型权重,然后将其嵌入到任务特定模型中。使用任务数据对整个模型进行微调,以适应具体任务。微调的目标是通过反向传播算法来调整模型的权重,以最大程度地提高任务性能。在微调完成后,使用验证数据集来评估模型的性能。

        推理:一旦微调完成并选择了最佳模型,就可以将该模型用于推理阶段,用来处理新的文本数据并产生预测或输出。对于新的文本数据,需要进行与预训练数据相同的预处理,包括分词、标记化等。将新数据传递给微调后的BERT模型,以获得模型的输出。

bert具体操作demo

        在使用BERT之前,首先需要具备如下环境:

        1.python 环境 我用的是3.8.5的

        2.相应的引用

pip install bertpip install bert-tensorflowpip install bert-serving-server --userpip install bert-serving-client --userpip install tensorflow==1.13.1

        3.代码下载 

谷歌的bert地址

        打开该地址后,页面搜索chinese,找到 如下内容。

        点击 BERT-Base, Chinese下载中文的预训练模型,也可以根据自己需要下载对应的模型。下载当前代码,使用pyCharm打开。

找到run_classifier.py文件,配置参数 运行它。

参数配置: parameters中具体内容:

--data_dir=data \
--task_name=sim \
--vocab_file=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/vocab.txt \
--bert_config_file=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/bert_config.json \
--output_dir=sim_model \
--do_train=true \
--do_eval=true \
--init_checkpoint=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=70 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130302.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven 自动化构建

自动化构建定义了这样一种场景: 在一个项目成功构建完成后,其相关的依赖工程即开始构建,这样可以保证其依赖项目的稳定。 比如一个团队正在开发一个项目 bus-core-api, 并且有其他两个项目 app-web-ui 和 app-desktop-ui 依赖于这个项目。 …

【安鸾靶场】cmseasy内网渗透 (500分)

文章目录 题目一、渗透开始后台执行rce漏洞内网横向 题目 一、渗透开始 上burp后没有报漏洞&#xff1a; /admin存在后台&#xff1a; 爆破一下&#xff1a; admin admin123 后台执行rce漏洞 POC&#xff1a; 1111111111";}<?php phpinfo()?> 触发漏洞&#xf…

【Unity ShaderGraph】| 如何快速制作一个炫酷 模型裁剪效果 实战

前言 【Unity ShaderGraph】| 如何快速制作一个炫酷 模型裁剪效果 实战一、效果展示二、简易裁剪效果三、进阶裁剪效果四、应用实例 前言 本文将使用Unity 的ShaderGraph制作一个模型裁剪的效果&#xff0c;可以直接拿到项目中使用。对ShaderGraph还不了解的小伙伴可以参考这篇…

唐老师讲电赛

dc-dc电源布局要点

Android平台GB28181设备接入侧如何实现SIP校时

规范解读 GB/T28181-2016规范里面&#xff0c;9.10.1章节&#xff0c;关于校时基本要求&#xff1a; 联网内设备支持基于SIP方式或 NTP方式的网络校时功能&#xff0c;标准时间为北京时间。 SIP方式校时见本节具体描述&#xff1b;NTP(见IETFRFC2030)协议的网络统一校时服务…

Docker 基础

一、快速入门&#xff1a; 1.Docker的安装 安装docker引擎 官方网址&#xff1a;Install Docker Engine on CentOS | Docker Docs 朋友们&#xff0c;有坑&#xff0c;千万不要用官方的仓库&#xff0c;就是下面这一步 记得用国内的镜像源&#xff1a; yum-config-manager …

基于ffmpeg给视频添加时间字幕

FFmpeg是一套可以用来记录、转换数字音频、视频&#xff0c;并能将其转化为流的开源计算机程序&#xff0c;我们可以基于ffmpeg对视频进行各种操作。本文主要介绍基于ffmpeg给视频添加字幕&#xff0c;字幕的内容为视频所播放的时间&#xff08;故需要安装ffmpeg&#xff0c;具…

多项目并行管理:优化协调策略提高效率

多项目同时进行已然是大部分项目管理者面临的现状了。相比于单项目管理&#xff0c;多项目管理可能会出现项目资源分配不均&#xff0c;项目进度监控难以及沟通协作复杂等问题。 可以通过一款灵活高效得项目管理工具&#xff0c;来帮助您进行多项目管理&#xff0c;比如 Zoho …

C#(Csharp)我的基础教程(二)(我的菜鸟教程笔记)-属性和字段的探究与学习

目录 1、字段字段特点&#xff1a;2、属性属性的特点 1、字段 字段是定义在方法外面的变量&#xff0c;是成员变量&#xff0c;主要是为了类的内部数据交换使用&#xff0c;字段一般是用private修饰&#xff0c;也可以用readonly修饰&#xff0c;表示只读字段&#xff0c;其它…

Bytebase 2.9.0 - 支持在工单创建前执行 SQL 审核

&#x1f680; 新功能 在工单创建前即可执行 SQL 审核。支持预定义表模板&#xff0c;可在变更或设计 Schema 时应用这些模板。 &#x1f384; 改进 增强工单搜索功能&#xff0c;支持通过「实例/数据库/工单类型/创建日期/创建人/发布人/订阅人」搜索。改进了分支功能的交…

flutter开发实战-video_player插件播放抖音直播实现(仅限Android端)

flutter开发实战-video_player插件播放抖音直播实现&#xff08;仅限Android端&#xff09; 在之前的开发过程中&#xff0c;遇到video_player播放视频&#xff0c;通过查看video_player插件描述&#xff0c;可以看到video_player在Android端使用exoplayer&#xff0c;在iOS端…

防止SQL注入攻击的综合解决方案

文章目录 摘要背景和危害性防御措施示例代码&#xff08;Java&#xff09;示例代码&#xff08;PHP&#xff09;示例MySQL命令示例代码&#xff08;Python&#xff09;示例代码&#xff08;C#&#xff0c;使用Entity Framework&#xff09; 进一步防御SQL注入攻击的措施使用ORM…