《动手学深度学习》——线性神经网络

参考资料:

  • 《动手学深度学习》

3.1 线性回归

3.1.1 线性回归的基本元素

样本: n n n 表示样本数, x ( i ) = [ x 1 ( i ) , x 2 ( i ) , ⋯ , x d ( i ) ] x^{(i)}=[x^{(i)}_1,x^{(i)}_2,\cdots,x^{(i)}_d] x(i)=[x1(i),x2(i),,xd(i)] 表示第 i i i 个样本。

预测: y ^ = w T x + b \hat{y}=w^Tx+b y^=wTx+b 表示单个样本的预测值, y ^ = X w + b \hat{y}=Xw+b y^=Xw+b 表示所有样本的预测值。

损失函数:
L ( w , b ) = ∑ i = 1 n 1 2 ( y ^ ( i ) − y ( i ) ) L(w,b)=\sum\limits_{i=1}^{n}\frac12\Big(\hat{y}^{(i)}-y^{(i)}\Big) L(w,b)=i=1n21(y^(i)y(i))

随机梯度下降:在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B , 它是由固定数量的训练样本组成的。然后按照如下方式更新参数:
( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum\limits_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b) (w,b)(w,b)BηiB(w,b)l(i)(w,b)
其中, η \eta η 为学习率,是一个超参数。

3.1.2 矢量化加速

尽可能使用效率较高的线性代数库。

3.1.3 正态分布与平方损失

假设观测存在噪声 ϵ \epsilon ϵ
y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,
ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim N(0, \sigma^2) ϵN(0,σ2)

此时有条件概率为:
P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right) P(yx)=2πσ2 1exp(2σ21(ywxb)2)
于是似然函数为:
L ( w , b ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) L(w,b) = \prod\limits_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}) L(w,b)=i=1np(y(i)x(i))
取对数再加负号,得:
− l ( w , b ) = ∑ i = 1 n ( 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 ) . -l(w,b) = \sum\limits_{i=1}^n \bigg(\frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2\bigg). l(w,b)=i=1n(21log(2πσ2)+2σ21(y(i)wx(i)b)2).
由于 π , σ \pi,\sigma π,σ 均为常数,故由上式可知,对线性模型的最小化均方误差等价于极大似然估计。

3.1.4 从线性回归到深度网络

image-20230704162948713

3.2 线性回归的从零开始实现

3.2.1 生成数据集

假定我们要生成一个包含 1000 个样本的数据集,每个样本包含从标准正态分布中采样的 2 个特征,样本的标签为:
y = X w + b + ϵ \mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon y=Xw+b+ϵ
其中, w = [ 2 , − 3.4 ] ⊤ \mathbf{w} = [2, -3.4]^\top w=[2,3.4] b = 4.2 b = 4.2 b=4.2 ϵ \epsilon ϵ 服从均值为 0 ,标准差为 0.01 的正态分布。

def synthetic_data(w, b, num_examples):  #@save"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)# 如果没有y.reshape,那么y将只有一个维度return X, y.reshape((-1, 1))

3.2.2 读取数据集

由于随机梯度下降法要求我们每次从样本中随机抽取一部分样本,所以我们可以定义 data_iter 用于样本的抽取:

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)# 在一轮训练中要用到所有的样本for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])# 每次参数更新只用到一小部分样本yield features[batch_indices], labels[batch_indices]

上面的代码仅用于理解抽取样本的过程,实际实现时可以使用内置的迭代器。

3.2.3 初始化参数

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

3.2.4 定义模型

def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b

3.2.5 定义损失函数

def squared_loss(y_hat, y):"""均方损失"""# 这里的y.reshape其实是没有必要的,因为labels在前面已经reshape过了return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

3.2.6 定义优化算法

def sgd(params, lr, batch_size):"""小批量随机梯度下降"""# 表示下一个代码块不需要进行梯度计算with torch.no_grad():for param in params:param -= lr * param.grad / batch_size# 清空梯度param.grad.zero_()

3.2.7 训练

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数with torch.no_grad():train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

3.3 线性回归的简洁实现

3.3.1 生成数据

这部分和 3.2.1 相同。

3.3.2 读取数据集

from torch.utils import data

我们可以直接使用 data 中的 API 来进行样本抽样:

def load_array(data_arrays, batch_size, is_train=True):"""构造一个PyTorch数据迭代器"""# TensorDataset相当于把所有tensor打包,传入的tensor的第0维必须相同# *的作用是“解压”参数列表dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
# 访问数据
for input,label in data_iter:print(input,label)

3.3.3 定义模型

# nn是神经网络的缩写
from torch import nnnet = nn.Sequential(nn.Linear(2, 1))

上面的代码中,Sequential 可以将多个层串联在一起;Linear 实现了全连接层,其参数 2,1 指定了输入的形状和输出的形状。

3.3.4 初始化模型参数

# net[0]表示选中网络中的第0层
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

3.3.5 定义损失函数

# 返回所有样本损失的均值
loss = nn.MSELoss()

3.3.6 定义优化算法

# SGD的输入为参数和超参数
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

3.3.7 训练

num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X) ,y)trainer.zero_grad()l.backward()# 使用优化器对参数进行更新trainer.step()l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')

3.4 softmax回归

3.4.1 分类问题

一般将不同的类别用独热编码表示。

3.4.2 网络架构

假设每个样本有 4 个特征和 3 种可能的类别,则 softmax 回归的网络结构如下图所示:

image-20230704162856668

3.4.3 全连接层的参数开销

一般而言全连接层有 d d d 个输入和 q q q 个输出,则其参数开销为 O ( d p ) O(dp) O(dp)

3.4.4 softmax运算

对于分类问题,我们想得到的是输入属于每一种类别的概率,所以我们要对输出进行一定的处理,使之满足概率基本公理:
y ^ = s o f t m a x ( o ) 其中 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum\limits_k \exp(o_k)} y^=softmax(o)其中y^j=kexp(ok)exp(oj)
显然, y ^ \hat{\mathbf{y}} y^ 的每个分量恒正且和为 1 1 1 ,且 softmax 不会改变 o \mathbf{o} o 之间的大小顺序。

3.4.5 小批量样本的矢量化

KaTeX parse error: Expected 'EOF', got '&' at position 13: \mathbf{O} &̲= \mathbf{X} \m…

3.4.6 损失函数

softmax 回归的似然函数为:
L ( θ ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ) L(\theta)=\prod\limits_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) L(θ)=i=1nP(y(i)x(i))
取负对数,得:
− log ⁡ L ( θ ) = ∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n ∑ j = 1 q − y j log ⁡ y ^ j \begin{align} -\log L(\theta)&=\sum\limits_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)})\notag\\ &=\sum\limits_{i=1}^n\sum\limits_{j=1}^q-y_j\log \hat{y}_j \end{align} logL(θ)=i=1nlogP(y(i)x(i))=i=1nj=1qyjlogy^j

解释以下上面的式子:因为样本的标签是一个长度为 q q q 的独热编码,所以里面的求和实际上就是求由输入推出其标签的条件的概率的负对数,这与 − log ⁡ P ( y ( i ) ∣ x ( i ) ) -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) logP(y(i)x(i)) 是等价的。

称:
l ( y , y ^ ) = ∑ j = 1 q − y j log ⁡ y ^ j l(\mathbf{y}, \hat{\mathbf{y}})=\sum\limits_{j=1}^q-y_j\log \hat{y}_j l(y,y^)=j=1qyjlogy^j
交叉熵损失(cross-entropy loss)。
l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) = ∑ j = 1 q y j log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j = log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j ∂ o j l ( y , y ^ ) = exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) − y j = s o f t m a x ( o ) j − y j \begin{aligned} l(\mathbf{y}, \hat{\mathbf{y}}) &= - \sum_{j=1}^q y_j \log \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)}\notag \\ &= \sum_{j=1}^q y_j \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\notag\\ &= \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\notag\\ \partial_{o_j} l(\mathbf{y}, \hat{\mathbf{y}}) &= \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} - y_j = \mathrm{softmax}(\mathbf{o})_j - y_j\notag \end{aligned} l(y,y^)ojl(y,y^)=j=1qyjlogk=1qexp(ok)exp(oj)=j=1qyjlogk=1qexp(ok)j=1qyjoj=logk=1qexp(ok)j=1qyjoj=k=1qexp(ok)exp(oj)yj=softmax(o)jyj
可以看出,梯度是观测值 y y y 和估计值 y ^ \hat{y} y^ 之间的差异,这使梯度计算在实践中变得容易很多。

3.5 图像分类数据集

3.5.2 读取小批量数据

batch_size = 256def get_dataloader_workers():"""使用4个进程来读取数据"""return 4train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers())

3.6 softmax回归的从零开始实现

3.6.1 初始化模型参数

输入是 28*28 的图像,可以看作长度为 784 的向量;输出为属于 10 个可能的类别的概率,故 W W W 应为 784*10 的矩阵, b b b 为 1*10 的行向量:

num_inputs = 784
num_outputs = 10W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

3.6.2 定义softmax操作

实现softmax由三个步骤组成:

  1. 对每个项求幂;
  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
  3. 将每一行除以其规范化常数,确保结果的和为1。

对应的代码为:

def softmax(X):X_exp = torch.exp(X)# 确保求和之后张量的维度不变partition = X_exp.sum(1, keepdim=True)return X_exp / partition  # 这里应用了广播机制

3.6.3 定义模型

def net(X):return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

这里的输入为什么只是一张图像呢?

3.6.4 定义损失函数

def cross_entropy(y_hat, y):return - torch.log(y_hat[range(len(y_hat)), y])cross_entropy(y_hat, y)

其中,y 为标签列表,代表样例的类别编号,如 [0,1,3]

3.6.5 分类精度

精度(accuracy)= 正确预测数量 / 总预测数量

def accuracy(y_hat, y):"""计算预测正确的数量"""if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:y_hat = y_hat.argmax(axis=1)cmp = y_hat.type(y.dtype) == yreturn float(cmp.type(y.dtype).sum())

上面的代码表示:如果 y_hat 是矩阵,那么假定第二个维度存储每个类的预测分数。 我们使用 argmax 获得每行中最大元素的索引来获得预测类别。 然后我们将预测类别与真实 y 元素进行比较。 由于等式运算符 “==” 对数据类型很敏感, 因此我们将 y_hat 的数据类型转换为与 y 的数据类型一致。 结果是一个包含0(错)和1(对)的张量。 最后,我们求和会得到正确预测的数量。

3.7 softmax回归的简洁实现

3.7.1 初始化模型参数

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)# apply会对net里的每一层执行init_weights函数
# 所以init_weights函数里的m是用来限定只初始化Linear层参数的
net.apply(init_weights);

3.7.2 定义损失函数

CorssEntropyLoss 的输入为 o \mathbf{o} o (未经过 softmax)和标签列表,输出为交叉熵。也就是说,我们在计算损失的时候不需要将输出通过 softmax 转化为概率,这是因为 softmax 中的指数运算非常容易溢出。

# none表示不合并结果,即loss为一个列表,元素为每个样本的交叉熵
# 这里之所以选择none,是因为后面既要用到损失的总和,又要用到损失的均值
loss = nn.CrossEntropyLoss(reduction='none')

3.7.3 优化算法

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

3.7.4 训练

# 累加器类
class Accumulator:"""在n个变量上累加"""def __init__(self, n):self.data = [0.0] * n# 将参数列表逐个加到累加器里def add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]
def train_epoch_ch3(net, train_iter, loss, updater):"""训练模型一个迭代周期(定义见第3章)"""# 将模型设置为训练模式if isinstance(net, torch.nn.Module):net.train()# 训练损失总和、训练准确度总和、样本数metric = Accumulator(3)for X, y in train_iter:# 计算梯度并更新参数y_hat = net(X)l = loss(y_hat, y)if isinstance(updater, torch.optim.Optimizer):# 使用PyTorch内置的优化器和损失函数updater.zero_grad()l.mean().backward()updater.step()metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())# 返回训练损失和训练精度return metric[0] / metric[2], metric[1] / metric[2]
def evaluate_accuracy(net, data_iter):  #@save"""计算在指定数据集上模型的精度"""if isinstance(net, torch.nn.Module):net.eval()  # 将模型设置为评估模式metric = Accumulator(2)  # 正确预测数、预测总数with torch.no_grad():for X, y in data_iter:# 这里的accuracy出自3.6.5metric.add(accuracy(net(X), y), y.numel())return metric[0] / metric[1]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):"""训练模型(定义见第3章)"""animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):# 训练一轮train_metrics = train_epoch_ch3(net, train_iter, loss, updater)# 在测试集上测试精度test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metrics# 这条代码的意思是:如果train_loss<0.5则继续执行,否则报错,报错内容为"train_loss"assert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

3.7.5 预测

使用 y_hat.argmax(axis=1) 即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/13209.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

特征选择算法 | Matlab实现基于ReliefF特征选择算法的分类数据特征选择 ReliefF

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 特征选择算法 | Matlab实现基于ReliefF特征选择算法的分类数据特征选择 ReliefF 部分源码 %--------------------

写一个starter(spring boot)

前置知识 自动装配 自动装配的一个重要注解就是SpringBootApplication。它是一个复合注解&#xff0c;由四个元注解和另外三个注解组成。这三个注解是&#xff1a; ConfigurationEnableAutoConfigurationComponentScan Configuration Configuration 是 JavaConfig 形式的…

神经网络之VGG

目录 1.VGG的简单介绍 1.2结构图 3.参考代码 VGGNet-16 架构&#xff1a;完整指南 |卡格尔 (kaggle.com) 1.VGG的简单介绍 经典卷积神经网络的基本组成部分是下面的这个序列&#xff1a; 带填充以保持分辨率的卷积层&#xff1b; 非线性激活函数&#xff0c;如ReLU&a…

web安全php基础_php变量命名及其作用域

php变量命名规则 php变量命名规则 变量以 $ 符号开始&#xff0c;后面跟着变量的名称变量名必须以字母或者下划线字符开始变量名只能包含字母数字字符以及下划线&#xff08;A-z、0-9 和 _ &#xff09;变量名不能包含空格变量名是区分大小写的&#xff08;$y 和 $Y 是两个不…

SELECT * 会导致查询效率低的原因

SELECT * 会导致查询效率低的原因 前言一、适合SELECT * 的使用场景二、SELECT * 会导致查询效率低的原因2.1、数据库引擎的查询流程2.2、SELECT * 的实际执行过程2.3、使用 SELECT * 查询语句带来的不良影响 三、优化查询效率的方法四、总结 前言 因为 SELECT * 查询语句会查…

【如何成功加载 HuggingFace 数据集】不使用Colab,以ChnSentiCorp数据集为例

【如何成功加载 HuggingFace 数据集】不使用Colab&#xff0c;以ChnSentiCorp数据集为例 前置加载数据集尝试一&#xff1a;标准加载数据库代码尝试二&#xff1a;科学上网尝试三&#xff1a;把 Huggingface 的数据库下载到本地尝试3.5 创建 state.json彩蛋 前置 Huggingface …

MySQL用户管理

目录 用户管理 用户 用户信息 创建用户 删除用户 修改用户密码 数据库的权限 给用户授权 回收权限 用户管理 如果我们只能使用root用户&#xff0c;这样存在安全隐患。这时&#xff0c;就需要使用MySQL的用户管理。 用户 用户信息 MySQL中的用户&#xff0c;都存储…

手写操作系统--进入保护模式的开篇

之前我们讲的主引导扇区以及内核加载器等内容。都是在实模式下运行的。在实模式下寻址范围仅有1M&#xff0c;是远远不够我们用的。我们想要更大的内存空间&#xff0c;就得进入保护模式&#xff0c;实模式是一个历史遗留问题&#xff0c;本身是没有这个名字的。是因为有了保护…

Keil环境下CANopenNode移植到STM32问题记录(一)---printf重定向问题

文章目录 问题描述问题结决思考&#xff1a;相关文章 在直接将CANopenSTM32的示例工程直接移植到Keil环境下。 如果移植工程未实现printf函数重定向&#xff0c;则要注释掉log_printf下面的printf函数&#xff0c;使日志打印失效 /* Printf function of CanOpen app */ #define…

vue3的getCurrentInstance()方法拿到的实例对象中的proxy

getCurrentInstance方法拿到的是当前组件的实例对象 实例对象中的成员proxy是一个代理对象&#xff0c;可以通过访问代理对象来间接访问当前组件的实例对象 这样就不需要this&#xff0c;也可以操作当前组件的实例对象了 proxy对象就相当于当前组件的实例对象 proxy对象会对…

FPGA实验五:信号发生器设计

目录 一、实验目的 二、设计要求 三、实验代码 1.代码原理分析 2.代码设计思路 3.IP核的设计与配置 四、实验结果及分析 1、引脚锁定 2、仿真波形及分析 &#xff08;1&#xff09;关于波形一些指标的介绍 &#xff08;2&#xff09;对波形转换功能的验证 &#xf…

【CPU】关于x86、x86_64/x64、amd64和arm64/aarch64

为什么叫x86和x86_64和AMD64? 为什么大家叫x86为32位系统&#xff1f; 为什么软件版本会注明 for amd64版本&#xff0c;不是intel64呢&#xff1f; x86是指intel的开发的一种32位指令集&#xff0c;从386开始时代开始的&#xff0c;一直沿用至今&#xff0c;是一种cisc指令…