【数字人】3、LIA | 使用隐式空间来实现视频驱动单张图数字人生成(ICLR 2022)

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 latent motion representation
      • 2.2 latent code driven image animation
      • 2.3 学习方式
      • 2.4 推理
    • 三、效果
      • 3.1 数据集
      • 3.2 训练细节
      • 3.3 评估
      • 3.4 定性效果
      • 3.5 定量效果
      • 3.6 消融实验
      • 3.7 失败示例

论文:Latent Image Animator: Learning to Animate Images via Latent Space Navigation

代码:https://github.com/wyhsirius/LIA

出处:ICLR 2022

一、背景

现有的 image animation 方法一般都使用计算机图形学、语义 map、人体关键点、3D meshs、光流等,这些方法的 gt 需要提前提取出来,在实际使用中会受限。对没见过的人物表现很差。

自监督方法将原始的视频作为输入,使用预测的密集光流场来控制输入图片的运动,这样虽然能够避免对领域知识或标记 gt 的需求,能够提升在任意图像上测试的性能。但这些方法需要明确的结构表达来作为运动指引。其他的先验信息如关键点等,也会使用一个额外的网络来进行端到端训练,作为预测光流场过程的中间特征。虽然这样不需要提前提取 gt label,但也会提升复杂度。

在本文中,为了降低复杂度,作者剔除了额外的分支,而是使用隐空间。本文方法受启发于 GAN、styleGAN、BigGAN

作者提出了 LIA(Latent Image Animate),主要由自编码器构成,通过隐空间来引导对图像的驱动

作者引入了 Linear Motion Decomposition (LMD) ,通过线性组合一系列可学习的运动方向和大小,来表达隐空间中的路径。也就是将这一系列都限制为正交基,每个向量都表示一个基础的视觉变换。

且在 LIA 中,在一个 encoder-generator 结构中的 motion 和 appearance 是解耦的,没有使用分开的网络结构,这样能降低计算量。

二、方法

Self-supervised image animation 的目标将 driving video 的运动迁移到 source image 上,让 source image 按照 driving video 的运动方式动起来

如图 2 所示,本文的想法是通过隐空间来引导运动系数的建模,整个大体过程如图 2 所示

  • 在训练过程中,需要同时输入 source 和 driving image,driving image 是从 video 中随机采样的。两个图像都会编码到隐空间,用于表达运动变化,training 目标是使用学习到的 motion transformation 和 source image 来重建 driving image
  • 在测试过程中,driving video 中的每一帧都会顺序的被处理,来驱动 source subject

在这里插入图片描述

框架结构如图 3 所示,整个模型是自编码器的结构,由两个主要的网络构成

  • encoder E:是第一步,也就是对 source image 和 driving image 进行编码,编码到隐空间,
  • generator G:是第二步,也就是当获得了 target latent code 后,G 会 decode

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.1 latent motion representation

给定 source image x s x_s xs 和 driving image x d x_d xd

latent motion representation 也是整个过程的第一步:

学习一个 latent code z s → d Z ∈ R N z_{s \to d}~ Z \in R^N zsd ZRN 来表达从 x s x_s xs x d x_d xd 的 motion transformation,由于这两个图片都有不确定性,直接学习 z s → d z_{s \to d} zsd 的话比较难,因为需要模型去捕捉非常复杂的运动。所以,在此处假设有一个 reference image x r x_r xr,motion transfer 的过程被建模为 x s → x r → x d x_s \to x_r \to x_d xsxrxd,而不是直接学习 z s → d z_{s \to d} zsd。因此,将 z s → d z_{s \to d} zsd 作为 latent space 的 target point,起始点为 z s → r z_{s \to r} zsr,线性路径为 w r → d w_{r \to d} wrd

在这里插入图片描述

在这里插入图片描述

reference image 如何生成:

在这里插入图片描述

x r x_r xr 到底表达的是什么:

  • 如图 5 所示, x r x_r xr 表达的是 x s x_s xs 的 canonical pose,

在这里插入图片描述

如何学习 w r → d w_{r \to d} wrd:LMD(Linear Motion Decomposition)

  • 首先,学习一组 motion directions D m = { d 1 , . . . , d M } D_m=\{d_1, ... , d_M\} Dm={d1,...,dM} 来在 latent space 表达任意的 path,且限制 D m D_m Dm 作为正交基,其中每个向量都表示运动方向 d i d_i di,且其中每两个向量两两之间都是正交的

    在这里插入图片描述

  • 然后,将 D m D_m Dm 中的每个基都和向量 A r → d = { a 1 , . . . , a M } A_{r \to d}=\{a_1, ..., a_M\} Ard={a1,...,aM} 进行结合, a i a_i ai 表示 d i d_i di 的模值,所以在 latent 空间中的每一个 linear path 都可以使用如下的线性组合来表示,且每个 d i d_i di 都表示一个基, a i a_i ai 表示步长。 A r → d A_{r \to d} Ard 是通过映射 z d → r z_{d \to r} zdr 得到的,是 x d x_d xd 经过 E 后的输出。

    在这里插入图片描述

  • 最后,latent motion representation 如下, D m D_m Dm 中的向量都是可学习的

    在这里插入图片描述

D m D_m Dm 中的方向表示什么:表示点头(d8)、眨眼(d6)、面部表情(d19、d7)等

在这里插入图片描述

在这里插入图片描述

2.2 latent code driven image animation

得到了 z s → d z_{s \to d} zsd 后,就是第二步了,即使用 G 来解码出 flow filed ϕ s → d \phi_{s \to d} ϕsd 并 warp x s x_s xs

G 包含两部分,且为了学习多尺度特征, G 使用了一个残差结构:

  • flow field 生成器 G f G_f Gf:包含 N 个 model 来不同 layer 的生成金字塔的 flow fields ϕ s → d = { ϕ i } 1 N \phi_{s \to d}=\{\phi_i\}_1^N ϕsd={ϕi}1N。从 E 中会获得多尺度 source features x s e n c = { x i e n c } 1 N x_s^{enc}=\{x_i^{enc}\}_1^N xsenc={xienc}1N,然后会在 G f G_f Gf 中进行 warp

    • 如果直接基于 ϕ s → d \phi_{s \to d} ϕsd 来 warp source feature,不能很充分且精确的来重建 driving image,因为在一些位置上会有遮挡,为了更好的预测这些遮挡位置的像素,需要对 warped feature map 进行修复,所以,在 G f G_f Gf 中也根据 { ϕ i } 1 N \{\phi_i\}_1^N {ϕi}1N 预测了 multi-scale mask { m i } 1 N \{m_i\}_1^N {mi}1N,可以 mask 出需要修复的区域

    • 每个残差模型中都有:

        	![在这里插入图片描述](https://img-blog.csdnimg.cn/45d30238ed51419893f36c5ee667cded.png)
      
    • 所以,输出共三个通道,前两个通道是 ϕ i \phi_i ϕi,最后一个通道是 m i m_i mi

  • refinement network G r G_r Gr:基于上面得到的修复后的 feature map f ( x i ′ ) f(x_i') f(xi) 和上一个 G r G_r Gr 得到的上采样后的 image g ( x i − 1 ) g(x_{i-1}) g(xi1),可以得到每个模块的 RGB 图像

    在这里插入图片描述

2.3 学习方式

作者使用 self-supervised 的方法来重建 x d x_d xd,使用了 3 个 loss:

  • reconstruction loss:重建 loss,用于最小化 x d x_d xd x s → d x_{s \to d} xsd 的 pixel-wise L 1 L_1 L1 距离

    在这里插入图片描述

  • perceptual loss:感知 loss,用于最小化感知特征 loss,使用的是 VGG19-based L v g g L_{vgg} Lvgg,衡量 real 和 generated images 的多尺度的 feature map 的距离,尺度分别为 256/128/64/32

    在这里插入图片描述

  • adversarial loss:对抗 loss,为了生成更真实的结果,作者在 x s → d x_{s \to d} xsd 上使用了不饱和的对抗 loss L a d v L_{adv} Ladv

    在这里插入图片描述

整体 loss:

在这里插入图片描述

2.4 推理

在推理阶段,给定一个 driving video 序列 V d = x t 1 T V_d={x_t}_1^T Vd=xt1T,目标是将 V d V_d Vd 的运动转移到 x s x_s xs 上,生成一个新的 video V d → s = { x t → s } 1 T V_{d \to s}=\{x_{t \to s}\}_1^T Vds={xts}1T

如果 V d V_d Vd x s x_s xs 来自同一个 video,则可以使用 absolute transfer 的方式来重建每帧,和训练的过程一样:

在这里插入图片描述

如果 V d V_d Vd x s x_s xs 来自不同的 video,这个时候两个图片中的人物的外貌特征、动作、表情都是不同的,这个时候就要使用 relative transfer 来估计

在这里插入图片描述

三、效果

3.1 数据集

  • VoxCeleb
  • TaichiHD
  • TED-talk

裁剪到分辨率大小为 256x256

在这里插入图片描述
在这里插入图片描述

3.2 训练细节

  • 4 个 16G NVIDIA V100 GPUs
  • batch size 为 32,每张卡上 8 张图
  • 学习率:0.002
  • 优化器:Adam
  • latent code 维度, D m D_m Dm 中的方向 都是 512
  • l a m b d a lambda lambda:10
  • 训练时间: 150 小时

3.3 评估

3.4 定性效果

在这里插入图片描述

3.5 定量效果

同一人物的重建:

在这里插入图片描述

跨视频的生成

在这里插入图片描述

User study:

在这里插入图片描述

3.6 消融实验

1、motion dictionary D m D_m Dm 是否有效:

在这里插入图片描述

2、 D m D_m Dm 需要多少个方向:20 个最优

在这里插入图片描述

3.7 失败示例

  • Taichi 中,身体遮挡重合(如胳膊、腿等)的部分无法很好的 transfer
  • 在 TED-talks,手部动作难以 transfer

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132594.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言,指针的一些运算

若创建一个数组:int arr[10] 0; 用指针变量来储存数组首元素的地址:int* p arr,这里arr是数组名,表示首元素地址。 若p p 1或者p之后p本来指向数组首元素地址,就变成了指向第二个元素的地址,p n即指向第n 1个地…

力扣 -- 1143. 最长公共子序列

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int longestCommonSubsequence(string s1, string s2) {int ms1.size();int ns2.size();s1 s1;s2 s2;vector<vector<int>> dp(m1,vector<int>(n1));for(int i1;i<m;i){for(int j1;j&…

大量需求测不过来怎么破?

互联网测试少&#xff0c;测试研发比大概在1:5&#xff0c;再加上产品再使足了劲上需求&#xff0c;导致了测试需求量大&#xff0c;测试准备时间短&#xff0c;从而降低了上线质量。那么如何解决呢&#xff1f;测试是质量负责人&#xff0c;要对平台质量负责&#xff0c;于是就…

C# redis通过stream实现消息队列以及ack机制

redis实现 查看redis版本 redis需要>5.0 Stream 是 Redis 5.0 引入的一种专门为消息队列设计的数据类型&#xff0c;Stream 是一个包含 0 个或者多个元素的有序队列&#xff0c;这些元素根据 ID 的大小进行有序排列。 它实现了大部分消息队列的功能&#xff1a; 消息 ID…

React Native从0到1开发一款App

先贴上项目地址&#xff0c;有需要的大佬可以去github看看&#xff1a; WinWang/RNOpenEye: React Native(0.72)版本开眼OpenEye项目 (github.com) React Native&#xff08;0.72&#xff09;版本OpenEye项目&#xff0c;主要用来熟悉并上手RN项目的开发&#xff0c;是Flutte…

nodejs+vue+elementui实验室预约管理系统

简单的说 Node.js 就是运行在服务端的 JavaScript。 前端技术&#xff1a;nodejsvueelementui 前端&#xff1a;HTML5,CSS3、JavaScript、VUE实验室如何适应新的时代和新的潮流,开展有效的信息服务工作,完成时代赋予的新使命?本文就这一问题谈谈几点粗浅的看法.扩大业务范围,更…

栈的运行算法

一&#xff0c;顺序栈的静态分配 二&#xff0c;顺序栈的动态分配 #include<stdio.h> #include<stdlib.h> #define initsize 5 #define incresize 5typedef struct Sqstack{int *base;int *top;int stacksize; }Sqstack;void InitStack(Sqstack *s){(*s).base(int…

MNIST字符识别(C++)

构建网络 采用官方示例的的lenet网络 训练 相关文件都已编译好&#xff0c;下载后执行命令即可 .\caffe-bin.exe train --solver .\lenet_solver.prototxt 识别 #include <caffe/caffe.hpp>#include <opencv2/core/core.hpp> #include <opencv2/highgui/hi…

echarts画电压线

ChartLibhttp://chartlib.datains.cn/detail?idx0R9f3tOqMExamples - Apache EChartsApache ECharts&#xff0c;一款基于JavaScript的数据可视化图表库&#xff0c;提供直观&#xff0c;生动&#xff0c;可交互&#xff0c;可个性化定制的数据可视化图表。https://echarts.ap…

对验证码的识别爆破

声明&#xff1a;该系列文章首发于公众号&#xff1a;Y1X1n安全&#xff0c;转载请注明出处&#xff01;本公众号所分享内容仅用于每一个爱好者之间的技术讨论及教育目的&#xff0c;所有渗透及工具的使用都需获取授权&#xff0c;禁止用于违法途径&#xff0c;否则需自行承担&…

BN体系理解——类封装复现

from pathlib import Path from typing import Optionalimport torch import torch.nn as nn from torch import Tensorclass BN(nn.Module):def __init__(self,num_features,momentum0.1,eps1e-8):##num_features是通道数"""初始化方法:param num_features:特征…

为Yolov7环境安装Cuba匹配的Pytorch

1. 查看Cuba版本 方法一 nvidia-smi 找到CUDA Version 方法二 Nvidia Control Panel > 系统信息 > 组件 > 2. 安装Cuba匹配版本的PyTorch https://pytorch.org/get-started/locally/这里使用conda安装 conda install pytorch torchvision torchaudio pytorch-cu…