多线程 - 锁策略 CAS

v2-4b5a5ad9fde3b92509faea52047f65bc_b

常见的锁策略

此处谈到的锁策略,不局限于 Java,C++,Python,数据库,操作系统……但凡是涉及到锁,都是可以应用到下列的锁策略的

乐观锁 vs 悲观锁

锁的实现者,预测接下来锁冲突(锁竞争,两个线程针对一个对象加锁,产生阻塞等待了)的概率是大,还是不大,根据这个冲突的概率,来接下来做什么
~~ 这不是两把具体的锁,而是“两类锁”.

悲观锁:预测锁竞争不是很激烈.
乐观锁:预测锁竞争会很激烈.

通常来说,悲观锁一般做的工作更多一些,效率更低一些,乐观锁做的工作会更少一些,效率更高一点.但是并不绝对.
悲观锁和乐观锁,唯一的区别,主要就是看预测锁竞争激烈程度的结论.

轻量级锁 vs 重量级锁

轻量级锁: 加锁解锁,过程更快更高效.
重量级锁: 加锁解锁,过程更慢,更低效.

一个乐观锁很可能也是一个轻量级锁,一个悲观锁很可能也是一个重量级锁.
多数情况下,乐观锁,也是一个轻量级锁.
多数情况下,悲观锁也是一个重量级锁.

自旋锁 vs 挂起等待锁

自旋锁是轻量级锁的一种典型实现.
挂起等待锁是重量级锁的一种典型实现.

image-20231010185737617

互斥锁 vs 读写锁

互斥锁

synchronized,是互斥锁
synchronized 只有两个操作:
1.进入代码块,加锁
2.出了代码块,解锁
加锁,就只是单纯的加锁,没有更细化的区分了

读写锁
~~ 读写锁,能够把读和写两种加锁区分开

读写锁:
1.给读加锁
2.给写加锁
3.解锁
注: 如果多个线程读同一个变量,不会涉及到线程安全问题!!!

读写锁中,约定:
1.读锁和读锁之间,不会锁竞争.不会产生阻塞等待,不会影响程序的速度,代码执行很快.
2.写锁和写锁之间,有锁竞争,减慢速度,但是保证准确性.
3.读锁和写锁之间,也有锁竞争,减慢速度,但是保证准确性.
注:
1.非必要不加锁.
2.读写锁更适合于,一写多读的情况.
3.多线程针对同一个变量并发读,这时是没有线程安全问题的,也就不需要加锁控制.
4.很多开发场景中,读操作非常高频,比写操作的频率高很多.
5.在Java标准库里面也提供了读写锁的具体实现(两个类,读锁类,写锁类).

公平锁 vs 非公平锁

此处把公平定义成“先来后到”
image-20231010214216578

公平锁: 当女神分手之后,就由等待队列中,最早来的舔狗上位.

image-20231010220437659

非公平锁: 雨露均沾了.
image-20231011011841261

注: 操作系统和 Java synchronized 原生都是“非公平锁”,操作系统这里的针对加锁的控制,本身就依赖于线程调度顺序.这个调度顺序是随机的,不会考虑到这个线程等待锁多久了.
要想实现公平锁,就得在这个基础上,能够引入额外的东西(引入一个队列,让这些加锁的线程去排队).

可重入锁 vs 不可重入锁

不可重入锁: 一个线程针对一把锁,连续加锁两次,出现死锁.
可重入锁: 一个线程针对一把锁,连续加锁多次都不会死锁.
注: 系统原生的锁,C++标准库的锁,Python标准库的锁…都不是可重入的锁!
synchronized是个"可重入锁",(加锁的时候会判定一下,看当前尝试申请锁的线程是不是已经就是锁的拥有者了,如果是,直接放行)

synchronized锁

针对上述六组锁策略, synchronized这把锁属于哪种呢??

synchronized 既是悲观锁,也是乐观锁 ~~ synchronized会根据当前锁竞争的激烈程度,自适应.
既是轻量级锁,也是重量级锁 ~~ synchronized默认是轻量级锁,如果发现当前锁竞争比较激烈,就会转换成重量级锁.
synchronized这里的轻量级锁部分基于自旋锁的方式实现,synchronized这里的重量级锁部分基于挂起等待锁的方式实现.
synchronized不是读写锁.
synchronized是非公平锁.
synchronized是可重入锁.
总结: 上述谈到的六种锁策略,可以视为是“锁的形容词”.

CAS

CAS ~~ 全称Compare and swap, 字面意思:”比较并交换“
一个 CAS 涉及到以下操作 :

我们假设内存中的原数据V,旧的预期值A,需要修改的新值B。
1.比较 A 与 V 是否相等。(比较)
2.如果比较相等,将 B 写入 V。(交换)
3.返回操作是否成功

image-20231011162715937

此处最特别的地方,上述这个 CAS 的过程,并非是通过一段代码实现的,而是通过一条 CPU 指令完成的 => CAS 操作是原子的 ~~ 就可以在一定程度上回避线程安全问题
因此解决线程安全问题除了加锁之外,又有了一个新的方向了.
小结: CAS 可以理解成是 CPU 给我们提供的一个特殊指令,通过这个指令,就可以一定程度的处理线程安全问题.

CAS 伪代码

image-20231011164911903

注: 下面写的代码不是原子的, 真实的 CAS 是一个原子的硬件指令完成的. 这个伪代码只是辅助理解 CAS 的工作流程.

CAS 的应用场景

1.实现原子类(Java 标准库里提供的类)

标准库中提供了 java.util.concurrent.atomic 包, 里面的类都是基于这种方式来实现的.典型的就是 AtomicInteger 类,其中的 getAndIncrement 相当于 i++ 操作.

import java.util.concurrent.atomic.AtomicInteger;/*** Created with IntelliJ IDEA.* Description:* User: fly(逐梦者)* Date: 2023-10-09* Time: 10:49*/
public class ThreadDemo28 {public static void main(String[] args) throws InterruptedException {// 这些原子类,就是基于 CAS 实现了 自增,自减等操作.此时进行这类操作不需要加锁,也是线程安全的.AtomicInteger count = new AtomicInteger(0);// 使用原子类, 来解决线程安全问题Thread t1 = new Thread(() -> {for (int i = 0; i < 5_0000; i++) {// 因为 java 不支持运算符重载,所以只能使用普通方法来表示自增自减count.getAndIncrement();// count++//count.incrementAndGet(); => ++ count//count.getAndDecrement(); => count--//count.decrementAndGet(); => -- count}});Thread t2 = new Thread(() -> {for (int i = 0; i < 5_0000; i++) {count.getAndIncrement();}});t1.start();t2.start();t1.join();t2.join();System.out.println(count.get());}
}

伪代码实现AtomicInteger

image-20231011235536304

2.实现自旋锁

自旋锁伪代码

image-20231012094749343

注: CAS 属于“特殊方法”,synchronized 属于“通用方法” –> 各种场景,都能使用(打击面广)

CAS 的典型问题: ABA 问题

CAS 在运行中的核心,检查 value 和 oldValue 是否一致.如果一致,就视为value 中途没有被修改过,所以进行下一步交换操作是没问题的.

这里一致,可能是没改过.也可能是,改过,但是还原回来了?!
把 value 的值设为A的话, CAS 判定 value 为 A,此时可能确实value始终是A,也可能是value本来是A,被改成了B,又还原成了A …

ABA 问题就相当于,买个手机,买到的这个手机,可能是新机,也可能是翻新机.

翻新机: 二手的,被销售商回收了,经过一些翻新操作(把外壳换了,重新包装).

ABA 这个情况,大部分情况下,其实是不会对代码/逻辑产生太大影响的,但是不排除一些“极端情况”,也是可能造成影响的.
例子:
image-20231012154239605

上述场景,概率非常低!!!一方面,恰好,滑稽这边多按了几次,产生多个扣款动作了,另一方面,恰好在这个非常极限的时间内,有人转账了一样的金额.

解决方案

针对当前问题,采取的方案,就是加入一个版本号.想象成,初始版本号是1,每次修改版本号都+1,然后进行 CAS 的时候不是以金额为基准了,而是以版本号为基准.此时,版本号要是没变,就是一定没有发生改变(版本号是只能增长,不能降低的).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132639.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

选择同步云盘工具?这些值得一试的优秀选择!

对于云盘用户而言&#xff0c;同步功能是影响产品选择的重要因素。在日常办公过程中&#xff0c;我们难免会遇到需要查看文件&#xff0c;但是存储文件的原设备不在身边的情况。这个时候同步云盘的重要性就显现出来了. 同步云盘的优势 文件同步&#xff1a;同步云盘可以将文件…

LeetCode【15】三数之和

题目&#xff1a; 解析&#xff1a; 参考&#xff1a;https://zhuanlan.zhihu.com/p/111715985 代码&#xff1a; public static List<List<Integer>> threeSum(int[] nums) {// 先排序Arrays.sort(nums);List<List<Integer>> result new ArrayLis…

Floorplanning with Graph Attention

Floorplanning with Graph Attention DAC ’22 目录 Floorplanning with Graph Attention摘要1.简介2.相关工作3.问题公式化4. FLORA的方法4.1 解决方案概述4.2 C-谱聚类算法 4.3 基于GAT的模型4.4 合成训练数据集生成 摘要 布图规划一直是一个关键的物理设计任务&#xff0…

系统还原备份及重启说明

系统还原备份说明 数据库备份 &#xff08;使用navicat&#xff09; 创建链接 点击连接&#xff0c;选中MySQL ​ 选中后弹出框填写相应信息 连接名&#xff1a;任意 主机&#xff1a;数据库所在地址Ip (本地通常是127.0.0.1/localhost) 端口&#xff1a;默认通常为3306…

2023年DDoS攻击暴增170%:美国、中国和印度是重灾区

根据网络安全厂商StormWall近日发布的《2023年一季度全球DDoS攻击综合报告》&#xff0c;2023年一季度DDoS攻击与2022年同期相比增长了47%。 DDoS攻击呈现三大趋势 调查结果显示DDoS攻击呈现三大趋势&#xff1a;僵尸网络再次兴起、针对关键基础设施&#xff0c;以及越来越多…

堆1111111111111111

1)一个java进程对应这个一个JVM实例&#xff0c;Runtime&#xff0c;就对应着一个运行时数据区&#xff0c;一个进程中的多个线程&#xff0c;共享同一份堆空间和方法区&#xff0c;而栈和程序计数器使每一个线程私有的 2)通过-Xms10m -Xmx10m是初始堆空间和最大堆空间 3)堆空间…

视频编解码(七)之FOURCC和YUV关系简介

FOURCC是4字节代码&#xff0c;是一个codec中对压缩格式、颜色、像素格式等的标识。按一个字节8bit&#xff0c;FOURCC通常占4字节32bit。 FOURCC is short for “four character code” - an identifier for a video codec, compression format, color or pixel format used i…

JavaScript Web APIs第四天笔记

Web APIs - 第4天 进一步学习 DOM 相关知识&#xff0c;实现可交互的网页特效 能够插入、删除和替换元素节点能够依据元素节点关系查找节点 日期对象 掌握 Date 日期对象的使用&#xff0c;动态获取当前计算机的时间。 ECMAScript 中内置了获取系统时间的对象 Date&#xff…

Arcgis实现Tiff合并

Arcgis实现Tiff合并 现有四幅Tiff影像 打开数据管理工具 输入使用这四幅影像 下面这个就是建立数据库&#xff0c;这个不对 点击确定 合成完毕

HDMI 基于 4 层 PCB 的布线指南

HDMI 基于 4 层 PCB 的布线指南 简介 HDMI 规范文件里面规定其差分线阻抗要求控制在 100Ω 15%&#xff0c;其中 Rev.1.3a 里面规定相对放宽了一些&#xff0c;容忍阻抗失控在 100Ω 25%范围内&#xff0c;不要超过 250ps。 通常&#xff0c;在 PCB 设计时&#xff0c;注意控…

【Unity3D编辑器开发】Unity3D中制作一个可以随时查看键盘对应KeyCode值面板,方便开发

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 在开发中&#xff0c;会遇到要使用监控键盘输入的KeyCode值来执…

从零开始探索C语言(十一)----共用体和位域

文章目录 1. 共用体1.1 定义共用体1.2 访问共用体成员 2. 位域2.1 位域声明2.2 位域的定义和位域变量的说明2.3 位域的使用2.4 位域小结 1. 共用体 共用体是一种特殊的数据类型&#xff0c;允许您在相同的内存位置存储不同的数据类型。您可以定义一个带有多成员的共用体&#…