HSN:微调预训练ViT用于目标检测和语义分割,华南理工和阿里巴巴联合提出

今天跟大家分享华南理工大学和阿里巴巴联合提出的将ViT模型用于下游任务的高效微调方法HSN,该方法在迁移学习、目标检测、实例分割、语义分割等多个下游任务中表现优秀,性能接近甚至在某些任务上超越全参数微调。

  • 论文标题:Hierarchical Side Tuning for Vision Transformers
  • 机构:华南理工大学、阿里巴巴
  • 论文地址:https://arxiv.org/pdf/2310.05393.pdf
  • 代码地址(即将开源):https://github.com/AFeng-x/HST#hierarchical-side-tuning-for-vision-transformers
  • 关键词:Vision Transformer、迁移学习、目标检测、实例分割、语义分割

1.动机

近年来,大规模的Vision Transformer(简称ViT)在多个任务中表现优秀,很多研究人员尝试利用ViT中的预训练知识提升下游任务的性能。然而,快速增长的模型规模使得在开发下游任务时直接微调预训练模型变得不切实际。 Parameter-efficient transfer learning(简称PETL)方法通过选择预训练模型的参数子集或在主干中引入有限数量的可学习参数,同时保持大部分原始参数不变,来解决该问题。

尽管PETL方法取得了重大成功,但主要是为识别任务而设计的。当将其用于密集预测任务时(比如目标检测和分割),与完全的微调相比其性能仍有很大的差距,这可能是由于密集预测任务与分类任务有本质上的不同。为了解决这一性能差距,作者提出了一种更通用的PETL方法Hierarchical Side-Tuning(简称HST),作者构建了Hierarchical Side Network(简称HSN),能产生金字塔式的多尺度输出,使得整个模型能适应不同的任务。

2.Hierarchical Side-Tuning(HST)

2.1 HST总体结构

HST的总体结构如下图所示:

上图中蓝色部分为普通的ViT,其权重被冻结;绿色部分为Adaptive Feature Bridge(简称AFB),用于桥接和预处理中间特征;粉色部分是Hierarchical Side Network(简称HSN),由1个Conv Stem和 L L L个Side Block组成。

对于ViT部分,输入图像首先通过patch embedding,然后进入 L L L个Transformer encoder;对于HSN部分,输入图像通过Conv Stem,从输入图像中引入局部空间上下文信息。HSN由4个stage组成,下采样率分别为 { 4 , 8 , 16 , 32 } \{4,8,16,32\} {4,8,16,32},输出4种不同尺度的特征。每个Transformer encoder都有1个对应的Side Block,信息流从backbone流向Side Block。

2.2 Meta Token

与其他prompt-based的微调方法不同,作者令prompt的数量为1,并将其称作Meta Token(简称MetaT),其结构如下图所示:

作者并没有丢弃prompt对应的输出特征,而是将其与输出的patch token一起作为Adaptive Feature Bridge的输入。由于MetaT的输出特征分布与patch token的分布有差异,这会影响HSN的性能,因此要微调Transformer中的Layer Normalization(简称LN)层,以改变特征的均值和方差(即改变了特征分布),有助于保持同一样本中不同特征之间的相对值。下图展示了MetaT的输出特征与ViT中patch token之间的余弦相似度,显然,通过微调LN层,MetaT的输出与patch token的向量方向能更好地对齐,从而有效地利用MetaT的输出特征。

2.3 Adaptive Feature Bridge(AFB)

由于ViT的输出特征与HSN中的特征形状不同,因此引入了Adaptive Feature Bridge(AFB),AFB包括2个重要部分:双分支分离(Dual-Branch Separation)和权重共享(Linear Weight Sharing),如下图所示:

Dual-Branch Separation

MetaT的输出和patch token先经过线性层进行维度变换,线性层的输出分为2个分支,patch token进行全局平均池化输出1个token,将其称作GlobalT,GlobalT与MetaT拼接得到 F m g i \mathcal{F}_{m g}^i Fmgi。通过双线性差值改变patch token的形状,使其与HSN中对应stage的特征形状一致。整体流程表示如下:

F m g i = [ W j F MetaT  i , AvgPooling ⁡ ( W j F patch  i ) ] ; F f g i = T ( W j F v i t i ) \mathcal{F}_{m g}^i=\left[W_j \mathcal{F}_{\text {MetaT }}^i, \operatorname{AvgPooling}\left(W_j \mathcal{F}_{\text {patch }}^i\right)\right] ; \mathcal{F}_{f g}^i=\mathcal{T}\left(W_j \mathcal{F}_{v i t}^i\right) Fmgi=[WjFMetaT i,AvgPooling(WjFpatch i)];Ffgi=T(WjFviti)

上式中 i i i表示第 i i i个Vit block, W j W_j Wj表示第 j j j个stage中线性层的权重矩阵。

Linear Weight Sharing

同一个stage中的多个AFB共享线性层权重,以减少可学习参数;此外,这样能在同一个stage中实现特征间的信息交互,达到与使用多个线性层相当的效果。

2.4 Side Block

Side Block包含1个cross-attention层和1个Feed-Forward Network(简称FFN),其结构如下图所示。

Side Block对ViT的中间特征和多尺度特征进行建模,考虑到这两个输入分支的特点,作者通过不同的方法将它们引入到Side Block中。

Meta-Global Injection

将HSN输出的多尺度特征作为Query(记作 Q Q Q),使用meta-global token作为key(记作 K K K)和value(记作 V V V),cross-attention表示如下:

( ( Q h s n ) ( K m g ) T ) V m g = A V m g \left(\left(Q_{h s n}\right)\left(K_{m g}\right)^T\right) V_{m g}=A V_{m g} ((Qhsn)(Kmg)T)Vmg=AVmg

上式中 Q h s n ∈ R L × d Q_{h s n} \in \mathbb{R}^{L \times d} QhsnRL×d ( K m g ) T ∈ R d × M \left(K_{m g}\right)^T \in \mathbb{R}^{d \times M} (Kmg)TRd×M V m g ∈ R M × d V_{m g} \in \mathbb{R}^{M \times d} VmgRM×d L L L表示多尺度特征输入序列的长度, M M M表示meta-global token的长度, d d d表示特征维度。

将Meta-Global Injection的输出记作 F ^ h s n i \hat{F}_{h s n}^i F^hsni,可表示如下:

F ^ h s n i = F h s n i + CrossAttention ⁡ ( F h s n i , F m g i ) \hat{\mathcal{F}}_{h s n}^i=\mathcal{F}_{h s n}^i+\operatorname{CrossAttention}\left(\mathcal{F}_{h s n}^i, \mathcal{F}_{m g}^i\right) F^hsni=Fhsni+CrossAttention(Fhsni,Fmgi)

上式中 i i i表示HST和ViT的第 i i i个block。

Fine-Grained Injection

将Meta-Global Injection的输出 F ^ h s n i \hat{F}_{h s n}^i F^hsni F f g i F_{f g}^i Ffgi进行元素相加,然后使用FFN进行建模,表示如下:

F h s n i + 1 = F ^ h s n i + F f g i + FFN ⁡ ( F ^ h s n i + F f g i ) F_{h s n}^{i+1}=\hat{F}_{h s n}^i+F_{f g}^i+\operatorname{FFN}\left(\hat{F}_{h s n}^i+F_{f g}^i\right) Fhsni+1=F^hsni+Ffgi+FFN(F^hsni+Ffgi)

F h s n i + 1 F_{h s n}^{i+1} Fhsni+1作为下一个Side Block的输入。

3.实验

3.1 实验设置

3.2 实验结果

(1)图像分类

(2)目标检测和实例分割

(3)语义分割


更多消融实验及分析请查看原文。

4.总结

作者提出了一种新的参数高效的迁移学习方法Hierarchical Side-Tuning(HST),可训练的side network利用了backbone的中间特征,并生成了用于进行预测的多尺度特性。通过实验表明,HST在不同的数据集和任务中表现优异,显著地减少了在密集预测任务中PETL与完全微调的性能差距。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/133270.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

培训考试系统如何满足个性化学习需求?

随着科技的不断发展,培训考试系统逐渐成为满足个性化学习需求的重要工具。个性化学习强调根据每个学员的特点和需求,量身定制学习内容和方式,提高学习效果和学习兴趣。 培训考试系统通过个性化内容推荐满足学员的学习需求。系统会根据学员的…

应用在汽车发动机温度检测中的高精度温度传感芯片

汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。 常见的车用温度传感器有进气温度传感器、变速器…

4.springcloudalibaba sentinel v1.8.6版本服务搭建

文章目录 前言一、sentinel服务端安装1.1 服务端下载1.2 启动sentinel服务 二、客户端使用sentinel2.1.pom增加sentinel包2.2 增加配置2.3 启动服务 三、验证3.1 给hello接口增加流控规则3.2 测试结果如下 总结 前言 前面完成了gateway项目部署并且测试,现在部署搭…

【ElasticSearch】深入探索 DSL 查询语法,实现对文档不同程度的检索,以及对搜索结果的排序、分页和高亮操作

文章目录 前言一、Elasticsearch DSL Query 的分类二、全文检索查询2.1 match 查询2.2 multi_match 查询 三、精确查询3.1 term 查询3.2 range 查询 四、地理坐标查询4.1 geo_bounding_box 查询4.2 geo_distance 查询 五、复合查询5.1 function score 查询5.2 boolean 查询 六、…

199、在RabbitMQ管理控制台中管理 Exchange(充当消息交换机的组件) 和 Queue(消息队列),以及对默认Exchange的讲解

目录 ★ 自动创建的Exchange★ 创建Exchange所支持的属性演示:创建消息队列 ★ 持久化消息★ 默认Exchange讲解 使用默认的 Exchange 支持 P2P: Exchange:把客户端发来的消息路由到消息队列去 每个虚拟机下面都默认有 Exchange ,通过这个默认…

解决jmeter软件显示为英文、返回数据乱码、设置编码格式的问题

一.jmeter软件每次打开都需要手动切换中文 1.修改配置文件,可以把jmeter设置成中文: 2.打开jmeter.properties配置文件,修改languagezh_CN 二.返回数据乱码 改配置文件 进入Jmeter的bin目录下,找到jmeter.properties文件&#…

Docker-harbor私有仓库部署与管理

搭建本地私有仓库 #首先下载 registry 镜像 docker pull registry #在 daemon.json 文件中添加私有镜像仓库地址 vim /etc/docker/daemon.json { "insecure-registries": ["20.0.0.50:5000"], #添加,注意用逗号结…

【数据库系统概论】SQL是什么?它有什么特点?

SQL是什么SQL的特点SQL的基本概念感谢 💖 SQL是什么 SQL(Structured Query Language)即结构化查询语句,是关系数据库的标准语言。它的功能不仅仅是查询,而是包括数据库模式创建、数据库数据的插入和修改、数据库安全性…

Redis实现简易消息队列的三种方式

Redis实现简易消息队列的三种方式 消息队列简介 消息队列是一种用于在计算机系统中传递和处理数据的重要工具。如果你完全不了解消息队列,不用担心,我将尽力以简单明了的方式来解释它。 首先,想象一下你正在玩一个游戏,而游戏中…

和鲸 ModelWhale 与华为 OceanStor 2910 计算型存储完成兼容性测试

数智化时代,数据总量的爆炸性增长伴随着人工智能、云计算等技术的发展,加速催化了公众对于数据存储与应用的多元化需求。同时,数据也是重要的基础资源和战略资源,需要严格保障其安全性、完整性。搭建国产数据基础设施底座&#xf…

Ansible概述以及模块

目录 一、Ansible概述 1、Ansible是什么 2、Ansible的作用 3、Ansible的特性 4、Ansible的工作机制 5、Ansible的特点 二、Ansible安装部署 1、管理端安装ansible 2、配置主机清单 3、配置密钥对验证 三、Absible命令行模块 1、command模块 2、shell模块 3、cron …

提升自媒体影音创作效率,这 10 款 AI 工具打工人必备!

随着AI工具的不断涌现,自媒体影音创作的效率也得到了提升,本次为大家介绍10款AI影音工具,为你的自媒体创作助力! 还是先上一张脑图: 自媒体必备AI工具 1. Runway AI视频编辑工具,支持文字转视频 目前最…