《机器学习》第5章 神经网络

文章目录

  • 5.1 神经元模型
  • 5.2 感知机与多层网络
  • 5.3 误差逆传播算法
  • 5.4 全局最小与局部最小
  • 5.5 其他常见神经网络
    • RBF网络
    • ART网络
    • SOM网络
    • 级联相关网络
    • Elman网络
    • Boltzmann机
  • 5.6 深度学习

5.1 神经元模型

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应。

神经网络中最基本的成分是神经元模型,即上述定义中的简单单元。

M-P神经元模型
在这里插入图片描述
理想中的跃阶函数:
在这里插入图片描述
实际常用Sigmoid作激活函数:
在这里插入图片描述

把许多个这样的神经元按一定层次结构连接起来就形成了神经网络。

5.2 感知机与多层网络

感知机由两层神经元组成,如下图所示,输入层接收外界输入信号后传递给输出层,输出层是M-P神经元,亦称阈值逻辑单元。
在这里插入图片描述
感知机权重:
在这里插入图片描述
在这里插入图片描述

要解决非线性可分问题,需要考虑使用多层神经元.如下图简单的两层感知机就能解决异或问题,输入层与输出层之间的一层神经元被称为隐层或隐含层,隐含层和输出层神经元都是拥有激活函数的功能神经元。

在这里插入图片描述
每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接,这样的神经网络结构通常称为“多层前馈神经网络”。
在这里插入图片描述

5.3 误差逆传播算法

误逆差传播算法(BP):训练多层网络,BP算法不仅可用于多层前馈神经网络,还可用于其他类型的神经网络。但通常说“BP网络”时,一般指用BP算法训练多层前馈神经网络。
在这里插入图片描述
假定神经网络的输出为:
在这里插入图片描述

则均方误差为:
在这里插入图片描述
确定参数:
网络中有(d+l+1)q+l个参数需确定:输入层到隐层的d × q个权值、隐层到输出层的q × l 个权值、q个隐层神经元的阙值、l个输出层神经元的阈值.BP是一个迭代学习算法,在迭代的每一轮中采用广义的感知机学习规则对参数进行更新估计。任意参数v的估计公式为:
在这里插入图片描述

算法:
在这里插入图片描述

目标:最小化训练集D上的累积误差:
在这里插入图片描述

缓解BP过拟合的两种方式:

  • (1)早停:将数据分成训练集和验证集,训练集用来计算梯度、更新连接权和阈值,验证集用来估计误差,若训练集误差降低但验证集误差升高,则停止训练,同时返回具有最小验证集误差的连接权和阈值。
  • (2)正则化:在误差目标函数中增加一个用于描述网络复杂度的部分,例如连接权与阈值的平方和,则误差目标函数(5.16)改变为:
    在这里插入图片描述

5.4 全局最小与局部最小

在这里插入图片描述
在这里插入图片描述

5.5 其他常见神经网络

RBF网络

RBF:径向基函数,是一种单隐层前馈神经网络,它使用径向基函数作为隐层神经元激活函数,而输出层则是对隐层神经元输出的线性组合。
假定输入为d维向量x,输出为实值,则RBF网络可表示为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ART网络

竞争型学习是神经元网络中一种常用的无监督学习策略,在使用该策略时,网络的输出元神经相互竞争,每一时刻仅有一个竞争获胜的神经元被激活,其他神经元的状态被抑制。这种机制被称为“胜者通吃”原则。

ART:自适应协振理论,竞争型,该网络由比较层、识别层、识别阈值和重置模块构成。
比较层负责接收输入样本,并将其传递给识别层神经元。识别层每个神经元对应一个模式类,神经元数目可在训练过程中动态增长以增加新的模式类。

ART比较好的缓解了竞争型学习中“可塑性-稳定性窘境”,可塑性是指神经网络要有学习新知识的能力,而稳定性是指神经网络在学习新知识时要保持对旧知识的记忆。这就使得ART网络有一个很重要的优点:可进行增量学习或在线学习。

SOM网络

SOM:自组织映射,一种竞争学习型的无监督神经网络,它能将高维输入数据映射到低维空间,同时保持输入数据在高维空间的拓扑结构,即将高维空间中相似的样本点映射到网络输出层中的临近神经元。

SOM的训练过程很简单:在接收到一个训练样本后,每个输出层神经元会计算该样本与自身携带的权向量之间的距离,距离最近的神经元成为竞争获胜者,称为最佳匹配单元(best matching unit).然后,最佳匹配单元及其邻近神经元的权向量将被调整,以使得这些权向量与当前输入样本的距离缩小.这个过程不断迭代,直至收敛.
在这里插入图片描述

级联相关网络

一般的神经网络模型通常假定网络结构是事先固定的,训练的目的是利用训练样本来确定合适的连接权、阈值等参数.与此不同,结构自适应网络则将网络结构也当作学习的目标之一,并希望能在训练过程中找到最符合数据特点的网络结构.级联相关(Cascade-Correlation)网络[Fahlman and Lebiere, 1990]是结构自适应网络的重要代表.
在这里插入图片描述
与一般的前馈神经网络相比,级联相关网络无需设置网络层数、隐层神经元数目,且训练速度较快,但其在数据较小时易陷入过拟合.

Elman网络

与前馈神经网络不同,“递归神经网络”(recurrent neural networks)允许网络中出现环形结构,从而可让一些神经元的输出反馈回来作为输入信号.这样的结构与信息反馈过程,使得网络在t时刻的输出状态不仅与t时刻的输入有关,还与t―1时刻的网络状态有关,从而能处理与时间有关的动态变化.
在这里插入图片描述

Boltzmann机

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.6 深度学习

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/133433.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全概述——常见网络攻击与网络病毒、密码体制、安全协议等

目录 1、信息安全五大要素 2、常见的网络攻击类型 2-1)网络攻击的分类: 2-2)常见网络攻击: DOS 攻击的分类: 2-3)常见网络攻击的防范措施 3、计算机病毒 3-1)常见病毒的前缀及其简要描述…

13.2 外部DirectX绘制实现

在前一节中我们简单介绍了D3D绘制窗体所具备的基本要素,本节将继续探索外部绘制技术的实现细节,并以此实现一些简单的图形绘制功能,首先外部绘制的核心原理是通过动态创建一个新的窗口并设置该窗口属性为透明无边框状态,通过消息循…

MySQL案例详解 三:MMM高可用架构及其故障切换

1. MMM高可用概述 1.1 简介 MMM(Master-Master replication manager for MvSQL,MySQL主主复制管理器)是一套支持双主故障切换和双主日常管理的脚本程序。 MMM提供了自动和手动两种方式移除一组服务器中复制延迟较高的服务器的虚拟ip&#xf…

Node.js 正在逐渐被淘汰!Bun 1.0 正在改变 JavaScript 的游戏规则

在深入讨论之前,我们需要解释什么是 JavaScript 运行时以及为什么我们应该关心其速度。 想象一下,你用 JavaScript 写了一个故事,需要有人大声读出来。JavaScript 运行时就像是那个友好的叙述者,为你的故事赋予生命!它…

nSoftware IPWorks IoT 2022 Java 22.0.8 Crack

物联网库,使用这个轻量级组件库,可以在任何平台上的应用程序中轻松实现物联网 (IoT) 通信协议。 nSoftware IPWorks IoT 最新的 IPWorks IoT 现已推出!最新版本的 IPWorks IoT 具有现代化和简化的体验,包括 .NET 中的异步和跨平台…

Android+Appium自动化测试环境搭建及实操

1、Appium简介1.1 Appium概念1.2 Appium工作原理 2、Appium Server环境搭建2.1 Java JDK2.1.1 下载JDK2.1.2 运行exe安装JDK,设置安装路径2.1.3 设置环境变量2.1.4 验证安装结果 2.2 Android SDK2.2.1 下载安装Android SDK安装包2.2.2 下载platform-tools&#xff0…

Android Studio展示Activty生命周期

前言 本文章以及之后文章的程序版本使用Android Studio 2022.3.1 Patch 1 版本编辑,使用语言为java,最低支持API 27 Android 8.1,构建工具版本如下: 本文章主要是介绍Activty跳转和删除,以备后续使用,所以就…

微信页面公众号页面 安全键盘收起后页面空白

微信浏览器打开H5页面和公众号页面,输入密码时调起安全键盘,键盘收起后 键盘下方页面留白 解决办法: 1、(简单)只有在调起安全键盘(输入密码)的时候会出现这种情况,将input属性改为n…

Vuex的基础使用存值及异步

目录 一、概述 ( 1 ) 讲述 ( 2 ) 概念 ( 3 ) 作用 二、取值 1. 安装 2. 菜单栏 3. 模块 4. 引用 三、改值 四、异步&后台请求 带来的获取 一、概述 ( 1 ) 讲述 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的…

【将文本编码为图像灰度级别】以 ASCII 编码并与灰度级别位混合将文本字符串隐藏到图像像素的最低位中,使其不明显研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

轻松搭建个人web站点:OpenWRT教程结合内网穿透技术实现公网远程访问

🔥博客主页: 小羊失眠啦 🔖系列专栏: C语言、Linux 🌥️每日语录:山不让尘,川不辞盈。 ❤️感谢大家点赞👍收藏⭐评论✍️ 前言 uhttpd 是 OpenWrt/LuCI 开发者从零开始编写的 Web …

Stable Diffusion 动画SD-Animatediff V2

AI不仅可以生成令人惊叹的图片,还能给这些图片注入生命,让它们动起来。 这就是AnimateDiff要做的事情,一个神奇的工具,能将静态的AI生成图像转换成动画。 本次介绍基于SD如何实现这个神奇的方法。 文章目录 插件安装使用方法参数调整文生动图/视频Controlnet方法SD API方…