暴力递归转动态规划(九)

题目
题有点难,但还挺有趣
有一个咖啡机数组arr[],其中arr[i]代表每一个咖啡机冲泡咖啡所需的时间,有整数N,代表着准备冲咖啡的N个人(假设这个人拿到咖啡后喝完的时间为0,拿手里咖啡杯即变空),有一台洗咖啡杯的机器,一次只能洗一只杯子,每次洗咖啡杯消耗的时间为a,如果咖啡杯自己挥发变干净,消耗的时间是b,返回从排队开始到所有咖啡杯变干净的最短时间。

分析:

  1. 根据题意梳理后可得知,每台咖啡机冲泡咖啡是并行操作的,但是单独的咖啡机自己,是只有等当前的咖啡冲泡完成后,才可冲泡下一杯,是串行操作的。
  2. 洗咖啡杯的机器消耗时间为a,但是要等咖啡冲泡完成后,才可进行清洗。举例:1号咖啡机冲泡1杯咖啡时间为2分钟,从0时间点开始冲泡一杯咖啡,2分钟时间点结束。那么洗咖啡杯的机器是在2分钟的时间点开始工作,在2 + a时间点工作完成,才可进行下一只咖啡杯的清洗。需要注意的是:如果咖啡杯1和2都选择清洗,但是1号咖啡杯是9时间点喝完,2号咖啡杯是6时间点喝完,则2号咖啡杯在清洗时,开始的时间点是 9 + a,是根据上一直需要清洗的咖啡杯的时间来决定的。
  3. 咖啡杯自己挥发是并行操作,并且变干净的时间都是b。

暴力递归
依然是从暴力递归开始分析,并从暴力递归转换成动态规划,但是在暴力递归之前,先将这道题拆解成2道题来看。
首先是根据咖啡机数组arr和准备冲咖啡的人数N来实现一个模拟排队的功能。作用是能够获取到每个人能够最快获取到咖啡的时间点

模拟排队
模拟排队的功能实现用到了PriorityQueue,并且自己实现了咖啡机的比较规则,根据PriorityQueue的特性让效率最快的咖啡机始终在最上面并进行使用。其中(0,1)表示当前咖啡机可用时间点为0,冲泡一杯咖啡时间为1。
在这里插入图片描述

解释一下上边的图:
咖啡机数组arr{1,3,7}代表着0号咖啡机冲泡一杯咖啡所需时间为1,1号咖啡机所需时间为3,2号咖啡机所需时间为7。开始时咖啡可用时间都从0时间点开始。一共有5个人排队冲咖啡。
根据咖啡机冲泡一杯所需时间 和 咖啡机下一次可用时间 来实现咖啡机的效率最大化

所以:

  1. 第一个人过来时,会去0号咖啡机冲咖啡,此时咖啡机在1时间点冲完,并且咖啡机下次可用时间点为1。
  2. 第二个人过来时,0号咖啡机可用时间点为1,冲泡一杯咖啡所需时间为1, 1 + 1 = 2 ,小于1号咖啡机冲泡一杯的时间3,所以还是会选择0号咖啡机冲泡咖啡。
  3. 第三个人过来时,0号咖啡机会在2时间点可用,冲泡一杯咖啡时间依然是1,但是此时1号咖啡机可用时间点是0,冲泡咖啡的时间是3。此时0号咖啡机和1号咖啡机冲泡一杯咖啡结束的时间点相同(用谁都可以),我们假设用1号咖啡机,用完后,1号咖啡机可用时间点为3,**根据PriorityQueue的特性,0号咖啡机又会排到上面 **。
  4. 所以第四个人、第五个人过来都会选择0号咖啡机。

代码

public static class Machine {// 咖啡机可以工作的时间点int timePoint;//泡一杯咖啡所需时间int workTime;public Machine(int timePoint, int workTime) {this.timePoint = timePoint;this.workTime = workTime;}}//自定义比较器public static class MachineComparator implements Comparator<Machine> {@Overridepublic int compare(Machine o1, Machine o2) {return (o1.timePoint + o1.workTime) - (o2.timePoint + o2.hashCode());}}public static int forceMake(int[] arr, int N, int a, int b) {PriorityQueue<Machine> heap = new PriorityQueue<>(new MachineComparator());//初始化时,填充heapfor (int i = 0; i < arr.length; i++) {heap.add(new Machine(0, arr[i]));}//每个人最快可以喝到咖啡的数组int[] drinks = new int[N];for (int i = 0; i < N; i++) {//获取堆顶的咖啡机元素Machine curMachine = heap.poll();//咖啡机下次可用时间curMachine.timePoint += curMachine.workTime;//什么时间可以喝到咖啡drinks[i] = curMachine.timePoint;//再次压入堆中heap.add(curMachine);}//process方法是递归方法,求出咖啡杯变干净的最少时间。return process(drinks, a, b, 0, 0);}

第一个模拟排队的问题解决了,接下来就是正式的暴力递归。
暴力递归方法返回drinks[index…]位置变干净的最小时间。
所以此时base case也可以确定下来了 index == drinks.length。 而每只杯子可以选择清洗,也可以选择挥发变干净。
所以在递归向下传递时需要注意清洗咖啡杯机器的可用时间的变化。

代码
代码中在向下传递时,如果我选择了清洗,则机器的可用时间是会向后延长的,如果选择了风干,也是要根据咖啡杯的可用时间来取最大值的(木桶原理),最后,在清洗和风干中,取小的。

 	//drinks: 每个人喝到咖啡的最短时间//wash :  用洗咖啡杯机器洗一只咖啡杯的时间// air :  空气挥发一杯咖啡杯的时间//index:  第几只杯子//free : 下一次洗咖啡杯机器可用时间public static int process(int[] drink, int wash, int air, int index, int free) {//没有杯子了if (index == drink.length) {return 0;}//选择洗int selfClean1 = Math.max(drink[index], free) + wash;//向下传递,下一只杯子清洗干净的时间,此时清洗咖啡杯机器的可用时间为selfClean1int restClean1 = process(drink, wash, air, index + 1, selfClean1);//木桶原理,因为选择了清洗,所以要看当前杯子selfClean和下一个杯子restClean那个时间更大,选择哪个int p1 = Math.max(selfClean1, restClean1);// 选择风干int selfClean2 = drink[index] + air;//free依然是free,清洗咖啡杯机器的时间没有变化。int restClean2 = process(drink, wash, air, index + 1, free);//同理int p2 = Math.max(selfClean2, restClean2);//在风干和清洗中选择一个最小的。return Math.min(p1, p2);}

动态规划
根据暴力递归中的代码来改写动态规划,从暴力递归代码中可以看出,可变参数是数组下标index和清洗咖啡杯机器的freeTime。并且index的范围是 0 ~ drinks.length,需要注意的是freeTime,和之前题的可变参数范围不同。这道题中freeTime的时间范围并不好确定,需要根据具体的业务来算出来(按照drinks中最大喝完咖啡的时间 + 清洗一杯咖啡杯的时间)
所以dp[][] 初始化时,可以确定范围 dp[N + 1][maxFree]。
还需要注意的一点是,因为在遍历dp填充值的时候,内循环是遍历maxFree,而变量free是可以无限逼近maxFree的,所以在计算restClean时,需要进行判断否则很可能会有数组下标越界的情况。
而在暴力递归过程中,无论怎么清洗咖啡杯,时间都不可能大于maxFree。所以,如果计算的selfClean1变量再加完 wash后,如果 > maxFree,则证明是无效的。在实际过程中不存在这种情况。break。这个值不用填充。

public static int dp(int[] drinks, int wash, int air) {int N = drinks.length;int maxFree = 0;for (int i = 0; i < N; i++) {maxFree = Math.max(maxFree, drinks[i]) + wash;}int[][] dp = new int[N + 1][maxFree + 1];for (int index = N - 1; index >= 0; index--) {for (int free = 0; free < maxFree; free++) {int selfClean1 = Math.max(drinks[index], free) + wash;if (selfClean1 > maxFree){break;}int restClean1 = dp[index + 1][selfClean1];int p1 = Math.max(selfClean1, restClean1);int selfClean2 = drinks[index] + air;int restClean2 = dp[index + 1][free];int p2 = Math.max(selfClean2, restClean2);dp[index][free] = Math.min(p1, p2);}}return dp[0][0];}

完整代码

 public static class Machine {// 咖啡机下一次可以工作的时间int timePoint;//泡一杯咖啡所需时间int workTime;public Machine(int timePoint, int workTime) {this.timePoint = timePoint;this.workTime = workTime;}}public static class MachineComparator implements Comparator<Machine> {@Overridepublic int compare(Machine o1, Machine o2) {return (o1.timePoint + o1.workTime) - (o2.timePoint + o2.hashCode());}}public static int minTime(int[] arr, int N, int a, int b) {PriorityQueue<Machine> heap = new PriorityQueue<>(new MachineComparator());for (int i = 0; i < arr.length; i++) {heap.add(new Machine(0, arr[i]));}int[] drinks = new int[N];for (int i = 0; i < N; i++) {Machine curMachine = heap.poll();drinks[i] = curMachine.timePoint;curMachine.timePoint += curMachine.workTime;heap.add(curMachine);}return process(drinks, a, b, 0, 0);}//drinks: 每个人喝咖啡的最短时间//wash :  用洗咖啡杯机器洗一只咖啡杯的时间// air :  空气挥发一杯咖啡杯的时间//index:  第几只杯子//free : 下一次洗咖啡杯机器可用时间public static int process(int[] drink, int wash, int air, int index, int free) {//没有杯子了if (index == drink.length) {return 0;}//选择洗int selfClean1 = Math.max(drink[index], free) + wash;int restClean1 = process(drink, wash, air, index + 1, selfClean1);int p1 = Math.max(selfClean1, restClean1);// 选择风干int selfClean2 = drink[index] + air;int restClean2 = process(drink, wash, air, index + 1, free);int p2 = Math.max(selfClean2, restClean2);return Math.min(p1, p2);}public static int minTime2(int[] arr, int N, int a, int b) {PriorityQueue<Machine> heap = new PriorityQueue<>(new MachineComparator());for (int i = 0; i < arr.length; i++) {heap.add(new Machine(0, arr[i]));}int[] drinks = new int[N];for (int i = 0; i < N; i++) {Machine curMachine = heap.poll();drinks[i] = curMachine.timePoint;curMachine.timePoint += curMachine.workTime;heap.add(curMachine);}return dp(drinks, a, b);}public static int dp(int[] drinks, int wash, int air) {int N = drinks.length;int maxFree = 0;for (int i = 0; i < N; i++) {maxFree = Math.max(maxFree, drinks[i]) + wash;}int[][] dp = new int[N + 1][maxFree + 1];for (int index = N - 1; index >= 0; index--) {for (int free = 0; free < maxFree; free++) {int selfClean1 = Math.max(drinks[index], free) + wash;if (selfClean1 > maxFree){break;}int restClean1 = dp[index + 1][selfClean1];int p1 = Math.max(selfClean1, restClean1);int selfClean2 = drinks[index] + air;int restClean2 = dp[index + 1][free];int p2 = Math.max(selfClean2, restClean2);dp[index][free] = Math.min(p1, p2);}}return dp[0][0];}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/133892.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫(二十三)_selenium案例:动态模拟页面点击

本篇主要介绍使用selenium模拟点击下一页&#xff0c;更多内容请参考:Python学习指南 #-*- coding:utf-8 -*-import unittest from selenium import webdriver from selenium.webdriver.common.keys import Keys from bs4 import BeautifulSoup import timeclass douyuSelenium…

性能测试 —— 生成html测试报告、参数化、jvm监控

1.生成HTML的测试报告 1.1配置 (1)找到jmeter 的安装目录&#xff0c;下的bin中的jmeter.properties&#xff08;jmeter配置文件&#xff09; (2) ctrl f &#xff0c;搜索jmeter.save.saveservice.output_format&#xff0c;取消井号 并且 把等号后的xml改为csv&#xff0c;…

nvm、node、npm解决问题过程记录

在Windows10如何降级Node.js版本&#xff1a;可以尝试将Node.js版本降级到一个较旧的版本&#xff0c;以查看问题是否得以解决。可以使用Node Version Manager (nvm) 来轻松切换Node.js版本&#xff0c;具体完整步骤&#xff1a; 首先&#xff0c;需要安装Node Version Manager…

leetCode 583.两个字符串的删除操作 动态规划 + 优化空间复杂度(二维dp、一维dp)

583. 两个字符串的删除操作 - 力扣&#xff08;LeetCode&#xff09; 给定两个单词 word1 和 word2 &#xff0c;返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1&#xff1a; 输入: word1 "sea", word2 &qu…

后厂村路灯在线签名网站,在线签名工具,IPA在线签名

IPA在线签名工具网站&#xff0c;在线实现IPA包签名 案例网站&#xff1a;在线签名 - 后厂村路灯https://sign.vx365.vip/ 用户可以自定义签名网站样式。 用户可以独立部署到自己服务器&#xff0c;使用自己的域名。 用户可以使用自己服务器&#xff0c;加快签名速度&#xf…

TypeScript React(上)

目录 扩展学习资料 TypeScript设计原则 TypeScript基础 语法基础 变量声明 JavaScript声明变量 TypeScript声明变量 示例 接口 (标准类型-Interface) 类型别名-Type 接口 VS 类型别名 类型断言:欺骗TS&#xff0c;肯定数据符合结构 泛型、<大写字母> 扩展学习…

Golang 实现接口和继承

小猴子继承了老猴子&#xff0c;这样老猴子拥有的能力包括字段&#xff0c;方法就会自动的被老猴子继承。 小猴子不需要做任何处理就可以拿到老猴子的字段和它的方法&#xff0c;因为是继承关系。 但是小猴子还会其他的技能&#xff0c;比如还会像小鸟一样飞翔&#xff0c;希…

LeetCode34 在排序数组中寻找元素的第一个和最后一个位置

题目&#xff1a; 思路&#xff1a; https://blog.csdn.net/wangjiaqi333/article/details/124526112 直观的思路肯定是从前往后遍历一遍。用两个变量记录第一次和最后一次遇见target的下标&#xff0c;但这个方法的时间复杂度为O(n)&#xff0c;没有利用到数组升序排列的条件…

TensorFlow入门(二十一、softmax算法与损失函数)

在实际使用softmax计算loss时,有一些关键地方与具体用法需要注意: 交叉熵是十分常用的,且在TensorFlow中被封装成了多个版本。多版本中,有的公式里直接带了交叉熵,有的需要自己单独手写公式求出。如果区分不清楚,在构建模型时,一旦出现问题将很难分析是模型的问题还是交叉熵的使…

虹科科技 | 探索CAN通信世界:PCAN-Explorer 6软件的功能与应用

CAN&#xff08;Controller Area Network&#xff09;总线是一种广泛应用于汽车和工业领域的通信协议&#xff0c;用于实时数据传输和设备之间的通信。而虹科的PCAN-Explorer 6软件是一款功能强大的CAN总线分析工具&#xff0c;为开发人员提供了丰富的功能和灵活性。本文将重点…

Swagger3.0 与spring boot2.7x 整合避免swagger2.0与boot2.7冲突

注释掉2.0引入的俩包 直接引入3.0 <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artifactId><version>3.0.0</version></dependency> swagger配置文件粘贴即用哦 import org.springfram…

JVM 性能调优参数

JVM分为堆内存和非堆内存 堆的内存分配用-Xms和-Xmx -Xms分配堆最小内存&#xff0c;默认为物理内存的1/64&#xff1b; -Xmx分配最大内存&#xff0c;默认为物理内存的1/4。 非堆内存分配用-XX:PermSize和-XX:MaxPermSize -XX:PermSize分配非堆最小内存&#xff0c;默认为物理…