linux下 u2net tensorrt模型部署

  • TensorRT系列之 Windows10下yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov7 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov6 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov5 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolox tensorrt模型加速部署

  • TensorRT系列之 Linux下 u2net tensorrt模型加速部署

    文章目录

    • ubuntu下u2net tensorrt模型部署
      • 一、Ubuntu18.04环境配置
      • 1.1 安装工具链和opencv
      • 1.2 安装Nvidia相关库
        • 1.2.1 安装Nvidia显卡驱动
        • 1.2.2 安装 cuda11.3
        • 1.2.3 安装 cudnn8.2
        • 1.2.4 下载 tensorrt8.4.2.4
        • 1.2.5 下载仓库TensorRT-Alpha并设置
      • 二、从u2net源码中导出onnx文件
      • 三、利用tensorrt编译onnx模型
      • 四、编译执行u2net-tensorrt工程
      • 五、结束语

ubuntu下u2net tensorrt模型部署

  • U-2-Net是一种基于显著对象检测(SOD)的卷积神经网络,其核心思想是探索比场景或图像周围区域更专注的物体或区域,因此非常适合于做抠图应用。这种算法主要利用由AlexNet,VGG,ResNet,ResNeXt,DenseNet等骨干网络提取的深度特征进行显著物体检测。

  • U-2-Net在设计上进行了一些创新。首先,它采用了编码器-解码器的结构,这种结构在许多分割模型中都有广泛应用,如U-Net。其次,U-2-Net在编码器和解码器之间添加了跳跃连接(skip connection),即在每个编码器阶段,都会将对应的特征图与解码器中的相应特征图相加。这种跳跃连接有助于将编码器的低级特征与解码器的高级特征相结合,从而提高分割的准确性。

  • U-2-Net的应用场景非常广泛,除了显著对象检测外,还可以应用于生物医学图像分割、语义分割等方向。由于U-2-Net具有较好的分割性能和较低的计算复杂度,因此在实际应用中具有较高的实用价值。

  • u2net对物体分割的边缘细节把控非常到位,如下图是检测效果。
    在这里插入图片描述
    在这里插入图片描述

本文提供u2net-tensorrt加速方法。
有源码!有源码!有源码! 不要慌,哈哈哈。
在这里插入图片描述

一、Ubuntu18.04环境配置

如果您对tensorrt不是很熟悉,请务必保持下面库版本一致。
请注意: Linux系统安装以下库,务必去进入系统bios下,关闭安全启动(设置 secure boot 为 disable)

1.1 安装工具链和opencv

sudo apt-get update 
sudo apt-get install build-essential 
sudo apt-get install git
sudo apt-get install gdb
sudo apt-get install cmake
sudo apt-get install libopencv-dev  
# pkg-config --modversion opencv

1.2 安装Nvidia相关库

注:Nvidia相关网站需要注册账号。

1.2.1 安装Nvidia显卡驱动

ubuntu-drivers devices
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470-server # for ubuntu18.04
nvidia-smi

1.2.2 安装 cuda11.3

  • 进入链接: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择:CUDA Toolkit 11.3.0(April 2021)
  • 选择:[Linux] -> [x86_64] -> [Ubuntu] -> [18.04] -> [runfile(local)]

    在网页你能看到下面安装命令,我这里已经拷贝下来:
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run

cuda的安装过程中,需要你在bash窗口手动作一些选择,这里选择如下:

  • select:[continue] -> [accept] -> 接着按下回车键取消Driver和465.19.01这个选项,如下图(it is important!) -> [Install]

    在这里插入图片描述
    bash窗口提示如下表示安装完成
#===========
#= Summary =
#===========#Driver:   Not Selected
#Toolkit:  Installed in /usr/local/cuda-11.3/
#......

把cuda添加到环境变量:

vim ~/.bashrc

把下面拷贝到 .bashrc里面

# cuda v11.3
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3

刷新环境变量和验证

source ~/.bashrc
nvcc -V

bash窗口打印如下信息表示cuda11.3安装正常

nvcc: NVIDIA (R) Cuda compiler driver<br>
Copyright (c) 2005-2021 NVIDIA Corporation<br>
Built on Sun_Mar_21_19:15:46_PDT_2021<br>
Cuda compilation tools, release 11.3, V11.3.58<br>
Build cuda_11.3.r11.3/compiler.29745058_0<br>

1.2.3 安装 cudnn8.2

  • 进入网站:https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.0 (April 23rd, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Linux (x86_64)
  • 你将会下载这个压缩包: “cudnn-11.3-linux-x64-v8.2.0.53.tgz”
# 解压
tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz

将cudnn的头文件和lib拷贝到cuda11.3的安装目录下:

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

1.2.4 下载 tensorrt8.4.2.4

本教程中,tensorrt只需要下载\、解压即可,不需要安装。

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 TAR Package
  • 你将会下载这个压缩包: “TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz”
# 解压
tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
# 快速验证一下tensorrt+cuda+cudnn是否安装正常
cd TensorRT-8.4.2.4/samples/sampleMNIST
make
cd ../../bin/

导出tensorrt环境变量(it is important!),注:将LD_LIBRARY_PATH:后面的路径换成你自己的!后续编译onnx模型的时候也需要执行下面第一行命令

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/temp/TensorRT-8.4.2.4/lib
./sample_mnist

bash窗口打印类似如下图的手写数字识别表明cuda+cudnn+tensorrt安装正常
在这里插入图片描述

1.2.5 下载仓库TensorRT-Alpha并设置

git clone https://github.com/FeiYull/tensorrt-alpha

设置您自己TensorRT根目录:

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# 在文件common.cmake中的第20行中,设置成你自己的目录,别和我设置一样的路径eg:
# set(TensorRT_ROOT /root/TensorRT-8.4.2.4)

二、从u2net源码中导出onnx文件

可以直接从网盘下载onnx文件[weiyun]:weiyun or google driver ,你也可以自己下载仓库,然后按照下面指令手动导出onnx文件:

# 下载u2net源码
https://github.com/xuebinqin/U-2-Net

安装 u2net环境

cd U-2-Net-master
pip install -r requirements.txt

在u2net官方git页面下载pth格式模型,你将得到文件:u2net.pth和u2netp.pth;其中,u2netp.pth是小模型。然后使用tensorrt-alpha中提供的python脚本导出onnx,脚本路径:TensorRT-Alpha/u2net/alpha_export.py,具体导出指令如下:

cp alpha_export.py U-2-Net-master
python alpha_export.py --net=u2net --weights=saved_models/u2net/u2net.pth
python alpha_export.py --net=u2netp --weights=saved_models/u2netp/u2netp.pth

三、利用tensorrt编译onnx模型

将你的onnx模型放到这个路径:tensorrt-alpha/data/u2net。

cd tensorrt-alpha/data/u2net
# 设置环境变量
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib

使用以下命令编译onnx模型:

# put your onnx file in this path:tensorrt-alpha/data/u2net
cd tensorrt-alpha/data/u2net
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=u2net.onnx   --saveEngine=u2net.trt   --buildOnly --minShapes=images:1x3x320x320 --optShapes=images:4x3x320x320 --maxShapes=images:8x3x320x320
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=u2netp.onnx  --saveEngine=u2netp.trt  --buildOnly --minShapes=images:1x3x320x320 --optShapes=images:4x3x320x320 --maxShapes=images:8x3x320x320

四、编译执行u2net-tensorrt工程

使用命令行编译下代码

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/u2net
mkdir build
cd build
cmake ..
make -j10

按照需求执行推理,支持推理一张图片、在线推理视频文件,或者在线从摄像头获取视频流并推理。

## 320
# infer image
./app_u2net  --model=../../data/u2net/u2net.trt --size=320  --batch_size=1  --img=../../data/sailboat3.jpg  --show --savePath# infer video
./app_u2net  --model=../../data/u2net/u2net.trt --size=320 --batch_size=2  --video=../../data/people.mp4  --show# infer camera
./app_u2net  --model=../../data/u2net/u2net.trt --size=320 --batch_size=2  --cam_id=0  --show

例如:以下是u2net 部署后小模型的分割人像效果。在这里插入图片描述

再看一组发丝级别的分割效果:
在这里插入图片描述
在这里插入图片描述

五、结束语

都看到这里了,觉得可以请点赞收藏,有条件的去仓库点个star,仓库:https://github.com/FeiYull/tensorrt-alpha
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/139098.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式截图记录

设计模式截图记录

pdf转二维码怎么做?pdf二维码制作简单技巧

pdf是一种很常见的文件储存格式&#xff0c;一般通知、发票、简历都会保存为这种格式来使用&#xff0c;那么需要将pdf格式文件做成二维码&#xff0c;该用什么方式来制作呢&#xff1f;下面给大家分享一个pdf转二维码的在线工具&#xff0c;可以通过上传文件一键生成二维码&am…

全新自适应导航网模板 导航网系统源码 网址导航系统源码 网址目录网系统源码

帝国CMS7.5开发目录网络程序基本功能描述&#xff1a; 1.一键获取目标站SEO信息。7.5版增加了一键获取会员中心网站信息权重&#xff0c;小程序提交发布&#xff0c;增加了新的自适应模板&#xff1b; 2.访客可以提交&#xff0c;访客提交手动审核&#xff0c;会员提交不审核…

论文研读|TextBack: Watermarking Text Classifiers using Backdooring

目录 论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证 实验结果保真度 & 有效性消融实验 方法评估相关文献 论文信息 论文名称&#xff1a;TextBack: Watermarking Text Classifiers using Backdooring 作者&#xff1a;Nandish Chattopadhyay, et al. Nanyang…

银河麒麟服务器x86安装qemu虚拟机,并安装windows server 2019

安装虚拟机 桌面右键&#xff0c;选择在终端中打开 输入下面的脚本 yum install -y virt-viewer virt-v2v libvirt* qemu* virt-manager 等待安装完成 安装成功 打开虚拟机软件 新建虚拟操作系统&#xff0c;以windows server 2019为例 选择镜像 点击前进 点击&#xff1a;是…

C语言练习题-指针-(编写一个函数,接受一个整型数组和数组的长度作为参数,将数组中的元素按逆序存放)

文章目录 前言题目题目1简单的代码框架 题目2测试用例 题目3测试用例 参考答案题目1答案1解析 答案2解析 题目2答案1答案2 题目3答案1答案2 其他文章 前言 本篇文章的题目为C的基础练习题&#xff0c;指针部分。做这些习题之前&#xff0c;你需要确保已经学习了指针的知识。 本…

MAYA教程之建模基础命令介绍

基础命令 视图相关操作 旋转视图 : ALT 鼠标左键平移视图 : ALT 鼠标中键缩放视图 : 滚动鼠标滚轮 或者 ALT 鼠标右键切换视图 : 空格键回到模型 : F 视图状态 选择状态 : Q移动状态 : W旋转状态 : E缩放状态 : R 视图显示 正常显示 : 1正常圆滑同时显示 : 2圆滑显示 …

说明书SMW200A信号发生器

罗德与施瓦茨SMW200A信号发生器 满足您的所有要求 频率范围介于 100 kHz 至 3 GHz、6 GHz、12.75 GHz、20 GHz、31.8 GHz 或 40 GHz 可选的附加射频路径&#xff08; 100 kHz 至 3 GHz、6 GHz、12.75 GHz 或 20 GHz&#xff09; 通用配置&#xff1a; 从单通道矢量信号发生器到…

填充颜色游戏

无语死了这题。 题目描述 小明最近迷上下面一款游戏。游戏开始时&#xff0c; 系统将随机生成一个 N N 的 正方形棋盘&#xff0c; 棋盘的每个格子都由六种颜色中的一种绘制。在每个步骤中&#xff0c; 玩家选择一种颜色&#xff0c; 并将与左上角连接的所有网格更改为该特…

ITextRenderer将PDF转换为HTML详细教程

引入依赖 <dependency><groupId>org.xhtmlrenderer</groupId><artifactId>flying-saucer-pdf-itext5</artifactId><version>9.1.18</version></dependency> 问题一&#xff1a;输出中文字体 下载字体simsun.ttc 下载链接&am…

24届好未来数开笔试

目录 选择、多选SQL题目描述输入 目标解答解析 题目分享 选择、多选 Java, int x 1, float y 2, x/y 0.5 2. Hive 的数据结构 基本数据类型 复合数据类型 text 不是 Hive 内外表 建表时如果不显示声明表的类型为 外表 Kafka 通过&#xff08;&#xff09;避免任务重复执行…

《开箱元宇宙》:《福布斯》如何通过 Web3 改进讲故事的方式

你们是否想知道 The Sandbox 如何融入世界上最具标志性的品牌和名人的战略&#xff1f;在本期《开箱元宇宙》系列中&#xff0c;我们与《福布斯》一起探讨了他们为何决定在 The Sandbox 中尝试 Web3&#xff0c;以及他们如何改变讲故事的方式&#xff0c;以便在一次体验中吸引超…