基于晶体结构优化的BP神经网络(分类应用) - 附代码

基于晶体结构优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于晶体结构优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.晶体结构优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 晶体结构算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用晶体结构算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.晶体结构优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 晶体结构算法应用

晶体结构算法原理请参考:https://blog.csdn.net/u011835903/article/details/122851304

晶体结构算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从晶体结构算法的收敛曲线可以看到,整体误差是不断下降的,说明晶体结构算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/139914.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue.js - 断开发送的请求,解决接口重复请求数据错误问题(vue中axios多次相同请求中断上一个)

描述 进入页面时第一个接口还在请求,立即切换tab请求第二个接口。但是第二个接口响应比第一个接口响应快,页面展示的时第一个接口的数据,如图: 解决方法 判断如果是相同的接

MySQL双主一从高可用

MySQL双主一从高可用 文章目录 MySQL双主一从高可用环境说明1.配置前的准备工作2.配置yum源 1.在部署NFS服务2.安装主数据库的数据库服务,并挂载nfs3.初始化数据库4.配置两台master主机数据库5.配置m1和m2成为主数据库6.安装、配置keepalived7.安装部署从数据库8.测…

使用REPLACE将数据库某一列字段进行字符串操作

REPLACE可以将表里的数据进行替换操作 如:需要把这一列里面的 # 去掉,经过测试,无论是开头、句中还是结尾都可以删除 UPDATE 表名 SET 字段名 REPLACE(字段名 , #, )

车载电子电器架构 —— 国产基础软件现在与未来

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不…

小谈设计模式(29)—访问者模式

小谈设计模式(29)—访问者模式 专栏介绍专栏地址专栏介绍 访问者模式角色分析访问者被访问者 优缺点分析优点将数据结构与算法分离增加新的操作很容易增加新的数据结构很困难4 缺点增加新的数据结构比较困难增加新的操作会导致访问者类的数量增加34 总结…

【软件工程】简单讲讲设计模式七大原则,以及代码简单举例

给自己一个目标,然后坚持一段时间,总会有收获和感悟! 学软件或计算机专业的同学应该都会接触到一门课程《软件工程》,七大设计原则属于软件工程中的重要知识点。 目录 一、软件工程1.1、提供指导和规范1.2、确保软件质量1.3、提高…

学会Docker之---应用场景和基本操作

实体机、VM和容器 实体机(Physical Machine)是指实际的物理设备,例如我们常见的计算机主机、服务器等。它们是由硬件组成,可以直接运行操作系统和应用程序。 虚拟机(Virtual Machine)是在一台物理机上通过…

去除照片中多余人物方法分享-这些方法快收藏起来

拍照时经常会碰到一些意外的情况,比如不小心捕捉到了一些不需要的人或物,这会影响照片的美观效果,因此学习如何去除照片中多余人物就显得特别重,下面分享一些常用的去除照片中多余人物的方法,如果你也感兴趣的话&#…

Linux块设备缓存Bcache使用

1 Bcache简介 Bcache是Linux内核块层cache,它使用SSD来作为HDD硬盘的cache,从而起到加速作用。Bcache内核模块仅在Linux 3.10及以上版本支持,因此使用Bcache,需要将内核升级到3.10及以上版本,并在内核配置项中打开Bca…

【Docker】Docker网络及容器间通信详解

目录 背景 默认网络 1、bridge 网络模式 2、host 网络模式 3、none 网络模式 4、container 网络模式 自定义网络 容器间网络通信 IP通信 Docker DNS server Joined容器 前言 本实验通过docker DNS server和joined 容器两种方法实现Docker容器间的通信。Docker容器间…

Qt工具开发,该不该跳槽?

Qt工具开发,该不该跳槽? 就这样吧,我怕你跳不动。 嵌入式UI,目前趋势是向着LVGL发展。QT已经在淘汰期了。很多项目还在用,但技术上已经落后。QT短期内不会全面淘汰,但退位让贤的大趋势已经很清楚了。 最近很多小伙伴…

UE4 顶点网格动画播放后渲染模糊问题

问题描述:ABC格式的顶点网格动画播放结束后,改模型看起来显得很模糊有抖动的样子 解决办法:关闭逐骨骼动态模糊