分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

目录

    • 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

1.MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制),运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)、SE注意力机制的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、正则化系数、神经元个数,这3个关键参数。
程序语言为matlab,程序可出分类效果图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/145788.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【编解码】解码字符串中的 UNICODE 字符

前言 由于前后端交互中编码的问题,出现了这样的一串字符: {"share_names":["\u4e2d\u6587\u8def\u5f84"]}出现了unicode编码作为字符串内容的情况,直接用json解析的话会报错,所以在json解析前需要先进行转码…

大数据技术学习笔记(三)—— Hadoop 的运行模式

目录 1 本地模式2 伪分布式模式3 完全分布式模式3.1 准备3台客户机3.2 同步分发内容3.2.1 分发命令3.2.2 执行分发操作 3.3 集群配置3.3.1 集群部署规划3.3.2 配置文件说明3.3.3 修改配置文件3.3.4 分发配置信息 3.4 SSH无密登录配置3.4.1 配置ssh3.4.2 无密钥配置 3.5 单点启动…

二叉排序树(BST)

二叉排序树 基本介绍 二叉排序树创建和遍历 class Node:"""创建 Node 节点"""value: int 0left Noneright Nonedef __init__(self, value: int):self.value valuedef add(self, node):"""添加节点node 表示要添加的节点&quo…

PI证书导入总结

当我们在用pi调用https的方式时,接口会报错提示iaik.security.ssl.SSLCertificateException。这需要我们导入对应的证书。 一.下载证书 根据对方提供的url ,在浏览器中输入,点击锁头图标,点击证书信息 二.点击详细信息标签&…

Vue单文件组件

一、.vue文件 我们使用Vue的单文件组件的时候&#xff0c;一个.vue文件就是一个组件。 例如我们创建一个School组件&#xff1a; 二、组件的结构 我们编写网页代码的时候有HTML结构、CSS样式、JS交互。 组件里也是同样存在这三种结构的&#xff1a; <template><d…

imu预积分学习(更新中)

imu预积分学习&#xff08;更新中&#xff09; IMU预积分可以做什么&#xff1f; 以上面那个经典图片为例子&#xff0c;IMU可以通过六轴数据&#xff0c;拿到第i帧和第j帧之间的相对位姿&#xff0c;这样不就可以去用来添加约束了吗 但是有一个比较大的问题是&#xff1a; I…

Explainable-ZSL

模型 体会 作者的实验做得很充足&#xff0c;但未提供可直接运行的代码

高等数学啃书汇总重难点(五)定积分

最近都在忙着刷题&#xff0c;尤其是政治和英语也开始加量复习了&#xff0c;该系列断更了将近2个月~不过最近在刷题的时候又遇到一些瓶颈&#xff0c;因此回归基础来整理一下知史点~ 总的来说&#xff0c;虽然第五章也是重中之重&#xff0c;定理数量也很多&#xff0c;但&…

REDIS命令

常见文件名 Redis-cli使用命令 1、启动Redis2、连接Redis3、停止Redis4、发送命令 1、redis-cli带参数运行&#xff0c;如&#xff1a;2、redis-cli不带参数运行&#xff0c;如&#xff1a;5、测试连通性key操作命令 获取所有键查询键是否存在删除键查询键类型移动键查询key的生…

【C++】继承 ⑧ ( 继承 + 组合 模式的类对象 构造函数 和 析构函数 调用规则 )

文章目录 一、继承 组合 模式的类对象 构造函数和析构函数调用规则1、场景说明2、调用规则 二、完整代码示例分析1、代码分析2、代码示例 一、继承 组合 模式的类对象 构造函数和析构函数调用规则 1、场景说明 如果一个类 既 继承了 基类 ,又 在类中 维护了一个 其它类型 的…

JAVA基础(JAVA SE)学习笔记(七)面向对象编程(进阶)

前言 1. 学习视频&#xff1a; 尚硅谷Java零基础全套视频教程(宋红康2023版&#xff0c;java入门自学必备)_哔哩哔哩_bilibili 2023最新Java学习路线 - 哔哩哔哩 第二阶段&#xff1a;Java面向对象编程 6.面向对象编程&#xff08;基础&#xff09; 7.面向对象编程&…

Java,回形数

回形数基本思路&#xff1a; 用不同的四个分支分别表示向右向下向左向上&#xff0c;假如i表示数组的行数&#xff0c;j表示数组的列数&#xff0c;向右向左就是控制j的加减&#xff0c;向上向下就是控制i的加减。 class exercise {public static void main(String[] args){//回…