经典目标检测神经网络 - RCNN、SSD、YOLO

文章目录

    • 1. 目标检测算法分类
    • 2. 区域卷积神经网络
      • 2.1 R-CNN
      • 2.2 Fast R-CNN
      • 2.3 Faster R-CNN
      • 2.4 Mask R-CNN
      • 2.5 速度和精度比较
    • 3. 单发多框检测(SSD)
    • 4. YOLO

1. 目标检测算法分类

目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与Two-Stage是两种不同的思路,其各有各的优缺点。

One-Stage
    主要思路:直接通过卷积神经网络提取特征,预测目标的分类与定位;

Two-Stage
    主要思路:先进行区域生成,即生成候选区域(Region Proposal),在通过卷积神经网络预测目标的分类与定位;

优缺点

优缺点One-StageTwo-Stage
优点速度快;避免背景错误产生false positives; 学到物体的泛化特征精度高(定位、检出率);Anchor机制;共享计算量
缺点精度低(定位、检出率);小物体的检测效果不好速度慢;训练时间长;误报相对高

从目前看,在移动端一般使用 One-Stage算法。现在很难说,精度和准确率的问题,因为影响因素不仅仅取决于算法,还跟数据集大小、图像标注质量、训练参数等有很大的关系。

主要算法

One-Stage:YOLO系列(v1-v8),SSD系列(R-SSD、DSSD、FSSD等),Retina-Net,DetectNet,SqueezeDet。

Two-Stage:RCNN系列(Fast-RCNN、Faster-RCNN、Mask-RCNN),SPPNet,R-FCN。


2. 区域卷积神经网络

2.1 R-CNN

在这里插入图片描述

使用启发式搜索算法来选择锚框。

使用预训练模型来对每个锚框抽取特征。

训练一个SVM来对类别分类。

训练一个线性回归模型来预测边缘偏移框。

当锚框每次选择的大小不同,我们如何使这些锚框称为一个batch呢?

兴趣区域(ROI)池化层

ROI Pooling

  • 给定一个锚框,均匀分割成 n × m \ n\times\ m  n× m块,输出每块里的最大值
  • 不管锚框多大,总是输出 n m nm nm个值

在这里插入图片描述

2.2 Fast R-CNN

对图片整体抽取特征。

  • 不再对每一个锚框做CNN的特征抽取,而是对图片整体使用CNN进行特征抽取
  • 使用RoI池化层对每个锚框生成固定长度特征

在这里插入图片描述

2.3 Faster R-CNN

  • 使用一个区域提议网络来代替启发式搜索,来获得更好的锚框。
    在这里插入图片描述

2.4 Mask R-CNN

  • 如果有像素级别的标号,使用FCN来利用这些信息
  • 在无人车领域运用较多

在这里插入图片描述

在做像素级别预测时,边界位置不要发生太多的错位。

2.5 速度和精度比较

在这里插入图片描述

总结:

  • R-CNN是最早、也是最有名的一类基于锚框和CNN的目标检测算法
  • Fast/Faster R-CNN持续提升性能
  • Faster R-CNN和Mask R-CNN是在最求高精度场景下的常用算法

3. 单发多框检测(SSD)

SSD全称Single Shot Multibox Detector,是一种单阶段目标检测器。其优点是原始的YOLO和Faster R-CNN在推理速度和精度之间取得了更好的平衡。SSD模型是由Wei Liu等人在使用卷积神经网络(CNN)进行目标检测的研究中,提出的一种改进思路。

SSD用于图像分类、物体检测和语义分割等各种深度学习任务。相对于其他目标检测算法,SSD模型有更高的精度,而且速度也是非常快的。其主要思路是通过在CNN的最后几层添加多个预测层实现多尺度的目标检测,然后通过一个过滤策略对每个检测框进行筛选,最后输出最终的检测结果。

在这里插入图片描述

生成锚框

在这里插入图片描述

  • 对每个像素,生成多个以它为中心的锚框
  • 给定n个大小为 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn m m m个高宽比,那么生成 n + m − 1 n+m-1 n+m1锚框,其大小和高宽比分别为:

( s 1 , r 1 ) , ( s 2 , r 1 ) , . . . , ( s n , r 1 ) , ( s 1 , r 2 ) , . . . , ( s 1 , r m ) (s_1,r_1),(s_2,r_1),...,(s_n,r_1),(s_1,r_2),...,(s_1,r_m) (s1,r1),(s2,r1),...,(sn,r1),(s1,r2),...,(s1,rm)

SSD模型

  • 一个基础网络来抽取特征,然后多个卷积层块来减半高宽
  • 在每段都生成锚框
    • 底部段来拟合小物体,顶部短来集合大物体
  • 对每个锚框预测类别和边缘框

总结:

  • SSD通过单神经网络来检测模型
  • 以每个像素为中心的产生多个锚框
  • 在多个段段输出上进行多尺度的检测

4. YOLO

You Only Look Once

YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎。

Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。

在这里插入图片描述

yolo尽量让锚框不重叠。

  • SSD中锚框大量重叠,因此浪费了很多计算
  • yolo将图片均匀分成 S × S S\times S S×S个锚框
  • 每个锚框预测 B B B个边缘框
  • 后续版本(V2,V3,V4…)有持续改进

YOLO家族进化史(V1-V8)

  • YOLOv1
  • YOLOv2:对YOLOv1进行改进
  • YOLOv3:对YOLOv2进行改进
  • YOLOv4:对YOLOv3进行改进
  • YOLOv5:对YOLOv4进行改进
  • YOLOx:以YOLOv3作为基础网络进行改进
  • YOLOv6:由美团推出,更加适应GPU设备,算法思路类似YOLOv5(backbone+neck)+YOLOX(head)
  • YOLOv7:是YOLOv4团队的续作,检测算法与YOLOv4,v5类似
  • YOLOv8:是YOLOv5团队进一步开发的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/151564.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

功能测试想进阶,可以提供一点点思路和方向吗?

1. 深入了解测试理论: 了解测试的原理、方法和最佳实践,包括黑盒测试、白盒测试、灰盒测试等。可以阅读相关的书籍或参加在线课程。 2. 学习相关测试工具: 掌握常用的测试工具,如缺陷发现工具、性能测试工具、安全测试工具等。…

openpnp - 程序发布包的制作

文章目录 openpnp - 程序发布包的制作概述笔记程序发布 - 简易打包备注程序发布 - 用install4j来打包END openpnp - 程序发布包的制作 概述 openpnp自带了intall4j的安装脚本. 官方说明这是intall4j 8.x的工程. 下载了intall4j 8.x(找不到注册码, 只能是90天试用版) 和 10.x…

SpringMVC Day 04 : 数据绑定

前言 SpringMVC是一个非常流行的Java Web框架,它提供了很多方便的功能和工具来帮助我们构建高效、灵活的Web应用程序。其中,数据绑定就是SpringMVC中非常重要的一部分,它可以帮助我们方便地将请求参数绑定到Java对象上,从而简化了…

C++模拟实现-----日期计算器(超详细解析,小白一看就会!)

目录 一、前言 二、日期类计算器 三、日期计算器的实现 🍎日期计算器各个接口的实现 🍐日期计算器的需求 🍉打印当前日期(并检查日期是否合理) 💦检查日期是否合理 💦日期类构造函数&#x…

[计算机提升] Windows系统各种开机启动方式介绍

1.14 开机启动 在Windows系统中,开机启动是指开启电脑后,自动运行指定的程序或服务的技术。一些程序或服务需要在开机后自动启动,以便及时响应用户操作,比如防安防软件、即时通信工具、文件同步软件等。 同时,一些系统…

soc的复位reset/rst问题

本节不去讨论同步复位与异步复位以及异步复位的reset_release,这些问题可参考:芯片设计进阶之路——Reset深入理解——cy413026 本机主要回答一下几个问题。 1.片外的reset信号特别是按键reset怎么防止错误抖动的影响? 常见的处理方法包括两…

STM32F4VGT6-DISCOVERY:uart1驱动

对于这款板子&#xff0c;官方并没有提供串口例程&#xff0c;只能自行添加。 一、PA9/PA10复用成串口1功能不可用 驱动测试代码如下&#xff1a; main.c: #include "main.h" #include <stdio.h>void usart1_init(void) {GPIO_InitTypeDef GPIO_InitStruct…

CAN接口的PCB Layout规则要求汇总

随着时代高速发展&#xff0c;控制器局域网&#xff08;CAN&#xff09;接口的应用越来越广泛&#xff0c;尤其是在汽车电子、航空航天等领域中发挥着重要作用&#xff0c;为了确保CAN接口的可靠性和稳定性&#xff0c;工程师必须在其PCB Layout方面下功夫&#xff0c;下面来看…

JVM虚拟机:Java对象的头信息有什么?

本文重点 在前面的课程中,我们学习了对象头,其中对象头包含Mark Word和class pointer,当然数组还会有一个数组长度。本文主要分析Mark Work中包含的信息。 Mark Word 以下两张图是一个意思: 32位 32位 64位 以上就是Mark Word会存储的信息,这个意思是说Java对象在不同…

FPGA时序分析与约束(7)——通过Tcl扩展SDC

一、概述 术语“Synopsys公司设计约束”&#xff08;又名SDC&#xff0c;Synopsys Design Constraints&#xff09;用于描述对时序、功率和面积的设计要求&#xff0c;是EDA工具中用于综合、STA和布局布线最常用的格式。本文介绍时序约束的历史概要和SDC的描述。 二、时序约束…

node实战——后端koa结合jwt连接mysql实现权限登录(node后端就业储备知识)

文章目录 ⭐前言⭐ 环境准备⭐ 实现过程⭐ mysql 配置⭐路由前的准备⭐账号注册生成token⭐账号登录生成token⭐token登录 ⭐ 自测过程截图⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享关于node实战——后端koa项目配置jwt实现登录注册&#xff08;n…

VScode 自定义主题各参数解析

参考链接&#xff1a; vscode自定义颜色时各个参数的作用(史上最全)vscode编辑器&#xff0c;自己喜欢的颜色 由于 VScode 搜索高亮是在是太不起眼了&#xff0c;根本看不到此时选中到哪个搜索匹配了&#xff0c;所以对此进行了配置&#xff0c;具体想增加更多可配置项可参考…